
TABLE OF CONTENTS

The SCORMTM Implementation Guide: A Step-by-Step Approach

1. Introduction……………………………………………………………………... .1-1
 BACKGROUND
 PURPOSE/AUDIENCE
 GUIDE STRUCTURE
 SCOPE
 ORGANIZATION
 DISCLAIMERS
 CONTRIBUTORS
 POINT OF CONTACT

2. SCORM Core Vocabulary……………………………………………………. .. .2-1
 ASSET...………………………………………………………………………......2-1
 SHARABLE CONTENT OBJECT (SCO)...……………………………...............2-1
 META-DATA ….…………………………………………………………………2-1
 CONTENT PACKAGE …..………………………………………………………2-1
 MANIFEST ……………………………………………………………………….2-1
 PACKAGE INTERCHANGE FILE (PIF) ….……………………………………2-2
 DATA MODEL…...………………………………………………………………2-2
 APPLICATION PROGRAM INTERFACE …..……………………………….…2-2
 LEARNING MANAGEMENT SYSTEM ….………………………………….…2-2
 LEARNING CONTENT MANAGEMENT SYSTEM .….………………………2-2

3. Analysis – Identify the Business Need .………………………………….. …….3-1
 WHAT ...……….…………………………………………………….............…...3-2
 WHY …………………………………………………………………………...…3-2
 HOW ……………………………………………………………….…………..…3-3

4. Analysis – Learner Analysis……..…………………………………………….. ..4-1

 WHAT ..…………………………………………………………………………..4-2
 WHY….………………………………………………………………….….…….4-2
 HOW.……………………………………………………………………….……..4-2

5. Analysis – Context Analysis ... 5-1

 WHAT ..…………………………………………………………………………..5-2
 WHY….…………………………………………………………………….….….5-2
 HOW.……………………………………………………………………….……..5-3

6. Design – Content Sequencing.. 6-1
 WHAT ..…………………………………………………………………………..6-2
 WHY….……………………………………………………………………..…….6-2
 HOW.……………………………………………………………………….……..6-2

TABLE OF CONTENTS

The SCORMTM Implementation Guide: A Step-by-Step Approach

7. Design – Design Documents .. 7-1

 WHAT ..…………………………………………………………………………..7-2
 WHY….……………………………………………………………………..…….7-2
 HOW.………………………………………………………………………….…..7-2

8. Develop Product – Create Meta-data for Assets... 8-1

 WHAT ..…………………………………………………………………………..8-2
 WHY….…………………………………………………………………….….….8-2
 HOW.……………………………………………………………………………...8-3

9. Develop Product – Create SCOs... 9-1

 WHAT ..…………………………………………………………………………..9-2
 WHY….…………………………………………………………………….….….9-2
 HOW.……………………………………………………………………………...9-3

10. Develop Product – Create Manifest ... 10-1

 WHAT ..……………………………………………………………………..…..10-2
 WHY….………………………………………………………….………….…...10-3
 HOW.…………………………………………………………….……………....10-3

11. Develop Product – Create Content Package ... 11-1

 WHAT ..…………………………………………………………………..……..11-2
 WHY….………………………………………………………………………….11-2
 HOW.………………………………………………………………………...…..11-3

12. Verification and Validation – Test and Evaluate Product 12-1

 WHAT ..……………………………………………………………...……...…..12-2
 WHY….……………………………………………………………...…….…….12-2
 HOW.………………………………………………………………………...…..12-2

13. Verification and Validation – Deliver and Implement Product 13-1

 WHAT ..…………………………………………………………………..……..13-2
 HOW.…………………………………………………………...………………..13-2

14. List of Acronyms.. 14-1

15. List of References... 15-1

Section 1: Introduction

1

The SCORMTM Implementation Guide: A Step-by-Step Approach

1. Introduction

Background

The Department of Defense (DoD) established the Advanced Distributed Learning
(ADL) Initiative in 1997 to develop a DoD-wide strategy for using learning and
information technologies to modernize education and training and to promote cooperation
between government, academia and business to develop e-learning standardization. The
ADL initiative has defined high-level requirements (“-ilities”) for learning content, such
as content reusability, accessibility, durability and interoperability to leverage existing
practices, promote the use of technology-based learning and provide a sound economic
basis for investment. The Sharable Content Object Reference Model (SCORM) defines a
reference model for sharable learning content objects that meet these high-level

Section 1: Introduction

requirements. The SCORMTM Implementation Guide: A Step-by-Step Approach describes
one way of applying the SCORM to a typical instructional design process.

The ADL Initiative is sponsored by the Office of the Secretary of Defense Deputy Under
Secretary of Defense for Readiness (OSD DUSD[R]).

Purpose/Audience

The purpose of The SCORMTM Implementation Guide: A Step-by-Step Approach is to
serve as practical guidance to instructional designers and developers for implementing
the SCORM. The guide illustrates how the SCORM may affect the instructional design
and development process of a Web-based training, as well as how the designer or
developer could approach course development when tasked with producing a SCORM
conformant product that runs on a SCORM-conformant Learning Management System
(LMS) or Learning Content Management System (LCMS).

It is not the intent of this guide to teach the instructional design or development process.
It is assumed that the reader is an experienced instructional designer or developer who
requires information on how the instructional design and development process is altered
in order to take advantage of implementing the SCORM. It also is assumed that the
designer or developer has a basic knowledge of the SCORM.

It is important to understand that there are many different approaches to designing and
developing instructionally sound Web-based content. The authors of this document are
providing one approach to the process; feel free to take the necessary SCORM guidance
and incorporate it into your own approach to designing/developing Web content.

Guide Structure

Although this guide follows a logical sequence of activities, you may read any or all
sections of this manual in any order that is appropriate for your knowledge and
experience.

For ease of use and presentation purposes, this guide follows a generic, four-phase
instructional design and development process as shown in Figure 1. The SCORM can be
implemented into any design and development process; it is instructionally neutral and
attempts to provide a means for expressing instructional design and development in a
manner that is executable by an LMS or LCMS via the Web.

2

The SCORMTM Implementation Guide: A Step-by-Step Approach

Section 1: Introduction

Figure 1. Guide Design and Development Process

As shown in Figure 2, the guide focuses only on the steps in the instructional design and
development process that are affected by the SCORM, as highlighted in red. You will
see this organizer graphic at the beginning of each section of the guide; with the
appropriate section highlighted, tracking where you are in the instructional design and
development process.

Figure 2. Guide Organizer Graphic

3

The SCORMTM Implementation Guide: A Step-by-Step Approach

Section 1: Introduction

Scope

There are many different approaches to developing SCORM-conformant content; this
manual is used as an example approach, which is not the only approach to implementing
the SCORM. Hypertext Markup Language (HTML) and Extensible Markup Language
(XML) are used as examples throughout this guide. It is not in the scope of this
document to provide examples of how to develop/design content in authoring tools or
tools that generate SCORM-conformant content or to provide guidance for using content
repositories.

Organization

The core vocabulary section provides the SCORM terminology that you should study
before continuing to other sections. Each section of the guide is organized to answer
“What,” “Why” and “How.”

• The “What” provides a brief definition of a step in the instructional design
process to build a context for discussing SCORM implementation.

• The “Why” explains why you should complete that section.
• The “How” provides you with a step-by-step process to implement the SCORM.

This manual is not intended to stand alone; you also will be directed to reference other
ADL and SCORM documents (see Section 15 – List of References). You can find these
documents, as well as more in-depth information such as the history and background of
ADL and the SCORM, on the ADL Web site: http://www.adlnet.org. You should have
the following documents available for reference:

• Advanced Distributed Learning, SCORMTM Version 1.2, available at
http://www.adlnet.org.

• Advanced Distributed Learning, SCORMTM Version 1.2 Conformance
Requirements Version 1.2, February 15, 2001.

This guide is based on the SCORM Version 1.2 and will continue to evolve with
subsequent versions of the SCORM.

Disclaimers

Neither ADL nor this guide recommend or endorse products or manufacturers listed in
this document. Products listed may be registered copyrights or trademarks of their
respective companies or manufacturers.

Contributors

The following organizations and individuals contributed to the content of this guide:

4

The SCORMTM Implementation Guide: A Step-by-Step Approach

Section 1: Introduction

Air Force Institute for Advanced Distributed Learning
Dr. Jerry A. Boling

U.S. Army Training Support Center
Jack Fedder
Carlton P. Hardy
Juanita G. Winstead

U.S. Naval Education and Training Professional Development and Technology
Center
Dennis Knott

Internal Revenue Service
Claude Mathews

Academic Advanced Distributed Learning Co-Laboratory
Judy Brown
John Toews

Advanced Distributed Learning Co-Laboratory
Philip Dodds
Jeff Falls
Nicole Franklin
Anne Hensel
Susan Herald
Alan Hoberney
Paul Jesukiewicz
Linda Monzo
Aimee Norwood
Jonathan Poltrack
Eric Roberts
Somer Ruga
Stacey Smith
Nancy Teich
Schawn Thropp
Ted Townsend

5

The SCORMTM Implementation Guide: A Step-by-Step Approach

Section 1: Introduction

Advanced Distributed Learning Co-Laboratory
Kristy Murray
Amy Rossmark

Key Contributors
Concurrent Technologies Corporation (CTC)
Institute for Defense Analyses (IDA)
Joint Submarine Analysis Group (JSAG)
Others TBD

Special thanks to the Office of the Secretary of Defense for their sponsorship of the ADL
Initiative and Dr. Robert Wisher, Director, ADL.

Point of Contact

If you have questions, concerns or comments regarding SCORM implementation, visit
the ADLNet Web site (http://www.adlnet.org) Help & Info Center or contact:
Advanced Distributed Learning Co-Laboratory
1901 N. Beauregard Street
Suite 600
Alexandria, Virginia 22311
703-575-2000

6

The SCORMTM Implementation Guide: A Step-by-Step Approach

Section 1: Introduction

7

The SCORMTM Implementation Guide: A Step-by-Step Approach

Section 2: SCORM Core Vocabulary

2. SCORM Core Vocabulary

SCORM Core Vocabulary identifies terminology that the user should be familiar with to
benefit fully from the sections that follow. Refer to these terms as needed throughout the
SCORM implementation process or consult the SCORM for more detailed definitions.

Asset

An Asset is a single electronic file representing media, text, image, audio, etc. Assets can
include, but are not limited to, jpg, txt, wav, avi, html and gif file types.

Sharable Content Object (SCO)

A SCO is a collection of one or more assets that is capable of being delivered via a Web
browser and has the capability of communicating to a Learning Management System
(LMS) via the SCORM Run-Time Environment (RTE) Application Program Interface
(API). Currently, SCOs may not link to one another or access data from each other.

Meta-data

Meta-data is “data about data.” From a SCORM perspective, meta-data represents a
mapping and recommended usage of Institute of Electrical and Electronics Engineers,
Inc. Learning Technology Standards Committee (IEEE LTSC) Learning Object Metadata
(LOM) to the Content Aggregation Model components (i.e., Assets, SCOs and Content
Aggregations). This meta-data is used to describe the Asset, SCO or Content
Aggregation in a consistent and meaningful way to enable the search and discovery of the
individual components through a content repository.

Content Package

A content package represents a unit of usable and reusable content. A content package
includes physical files that may contain a course or some portion of a course. In addition
to the physical files and the manifest, the content package also contains control files, and
is the mechanism that binds SCORM content model components to the respective meta-
data.

Manifest

A manifest is a mandatory XML file that describes the components of a content
package, much like a “packing slip.” The manifest consists of the following section, the:

• Meta-data section describes the package as a whole
• Organizations section describes one or more hierarchical organizations of the

content (content structure)

1

The SCORMTM Implementation Guide: A Step-by-Step Approach

Section 2: SCORM Core Vocabulary

• Resources section references the actual resource and media files necessary for the
content.

Package Interchange File (PIF)

A PIF is a single archive file that contains all of the elements of the content package.
SCORM supports the PKZip v.2.04 (.zip) format for PIF files. PIFs are intended to
facilitate moving content packages from one system to another.

Data Model

A data model is a common set of information about SCOs that can be tracked by LMSs.
From a SCORM RTE perspective, the data model works in conjunction with the API to
allow communication between the LMS and the content. The SCORM data model is
based on the Aviation Industry CBT (Computer-Based Training) Committee Computer
Managed Instruction (AICC CMI) data model defined in the AICC CMI001 “Guidelines
for Interoperability” document.1

Application Program Interface (API)

The API is a set of predefined functions that is available to a SCO. The SCORM API is
based on the AICC CMI API defined in the AICC CMI001 “Guidelines for
Interoperability” document.

Learning Management System (LMS)

An LMS is a software application or Web-based technology used to plan, implement and
assess a specific learning process. Typically, an LMS provides an instructor with a
mechanism to create and deliver content, monitor student participation and assess student
performance. An LMS may also provide learners with the ability to use interactive
features such as threaded discussions, video conferencing and discussion forums.2

Learning Content Management System (LCMS)

An LCMS controls and directs information to a specific learner at a specific time. An
LCMS is a multi-developer environment where developers can create, store, reuse,
manage and deliver learning content from a central object repository. ADL’s focus is on
distributed, not central, repositories.

1 AICC/CMI CM1001 Guidelines for Interoperability Version 3.4., October 23, 2000. Includes: AICC
Course Structure Format, AICC CMI Data Model available at http://www.aicc.org/.

2

2 Tech Target, SearchSystemsManagement.com,
http://searchsystemsmanagement.techtarget.com/sDefinition/0,,sid20_gci798202,00.html, accessed Oct. 31,
2002.

The SCORMTM Implementation Guide: A Step-by-Step Approach

Section 2: SCORM Core Vocabulary

3

The SCORMTM Implementation Guide: A Step-by-Step Approach

Section 3: Analysis — Identify the Business Need

1

The SCORMTM Implementation Guide: A Step-by-Step Approach

Section 3: Analysis — Identify the Business Need

3. Analysis — Identify the Business Need

What

Identifying a need for training is the first step in a uniform method of instructional
design. Identifying the business drivers behind the training need ensures a legitimate
training issue exists. For example, a training solution for an existing work process is not
useful if the performance issue is the result of poor morale; in that case, action to improve
morale is more appropriate. However, if educating users about efficient use of the work
process increases productivity, a business need for training exists.

Why

In the example above, the decision to implement training would be based on a detailed
cost-benefit analysis. The relationship of the SCORM to the business need is significant
because of the potential for the SCORM to increase Return On Investment (ROI) over the
long term. Implementation of the SCORM may increase the cost benefit of training by
allowing for durability, adaptability, interoperability, reusability and scalability of the
learning content.

The consideration of technical solutions like SCORM implementation in the early stages
of the Analysis Phase may be new to some instructional designers. However, since the
implementation decision will affect each phase of the process, it is critical that technical
considerations are made early and with significant input from the client.

The question of SCORM implementation is really one of project scope. We know that
the client wants effective and instructionally sound Web-based materials. But does the
client desire or need to add power to the product by making it durable, adaptable,
interoperable, reusable or scalable? If the client desires the type of increased power that
SCORM conformance provides, considerations for its implementation should be reflected
in the project scope, budget and schedule.

After the decision to implement the SCORM is made, the level of SCORM
implementation should be determined. The SCORM Version 1.2 Conformance
Requirements Version 1.2 document is downloadable from the ADLNet Web site
(http://www.adlnet.org/), and should be used as a guide for defining specific conformance
requirements with the client.

The Conformance Requirements document details options for various levels of SCORM
implementation. By defining the client’s conformance requirements according to the
implementation levels defined by the SCORM Version 1.2 Conformance Requirements
Version 1.2, you will ensure clear communication of expectations between the client and
the content development team. Additionally, by identifying the specific level of SCORM

2

The SCORMTM Implementation Guide: A Step-by-Step Approach

Section 3: Analysis — Identify the Business Need

conformance for SCOs, meta-data and content packages, the development team will be
prepared for conformance testing using the SCORM Version 1.2 Conformance Test Suite
Version 1.2.2 software. Details of the testing process are presented in the SCORM
Verification and Validation section (Section 13) of this document.

How

1. Decide with the client if SCORM is necessary and beneficial.
2. Work with the client to identify the desired level of SCORM conformance, and

document the results of the client meeting for later reference during SCORM
conformance testing using the SCORM Version 1.2 Conformance Test Suite Version
1.2.2 (See Job Aide 3-1).

3. Reflect decisions regarding SCORM implementation level in project scope, budget
and schedule.

4. Keep documentation of lessons learned for further SCORM development.

3

The SCORMTM Implementation Guide: A Step-by-Step Approach

Section 3: Analysis — Identify the Business Need

Job Aide 3-1 — Recording Desired Level of SCORM Conformance

Adapted from the SCORM Version 1.2 Conformance Requirements

Directions: Select one conformance category for each area of conformance: SCO, meta-
data and content package.

SCO
Desired
Conformance

Description

SCORM Version
1.2 Run-Time
Environment
Conformant –
Minimum

Requirements Summary: The SCO:
• Can be launched by a known conformant LMS as defined

in Section 3.2 of the SCORM Run-Time Environment
and

• Searches for and finds an API Adapter as a Document
Object Model (DOM) object and

• Invokes, at a minimum, the LMSInitialize() and
LMSFinish() API functions as described in Section 3.3 of
the SCORM Run-Time Environment and

• Any additional API functions that are invoked are called
correctly.

SCORM Version
1.2 Run-Time
Environment
Conformant –
Minimum with
Some Mandatory
Data Model
Elements

Requirements Summary: The SCO:
• Is “SCORM Version 1.2 Run-Time Environment

Conformant – Minimum,” and
• Implements support for correctly getting and/or setting

one or more LMS mandatory SCORM Version 1.2 Run-
Time Environment Data Model Elements. (Note: LMS
mandatory is defined as those data model elements that
are required to be implemented by an LMS.)

Note: If the SCO incorrectly implements one or more mandatory
SCORM Version 1.2 Run-Time Environment Data Model
Elements, the SCO is non-conformant.

4

The SCORMTM Implementation Guide: A Step-by-Step Approach

Section 3: Analysis — Identify the Business Need

SCO
Desired
Conformance

Description

SCORM Version
1.2 Run-Time
Environment
Conformant –
Minimum with
Some Optional
Data Model
Elements

Requirements Summary: The SCO:
• Is “SCORM Version 1.2 Run-Time Environment

Conformant – Minimum,” and
• Implements support for correctly getting and/or setting

one or more LMS optional SCORM Version 1.2 Run-
Time Environment Data Model Elements. (Note: LMS
optional is defined as those data model elements that are
optional for implementation by an LMS.)

Note: If the SCO incorrectly implements one or more optional
SCORM Version 1.2 Run-Time Environment Data Model
Elements, the SCO is non-conformant.

SCORM Version
1.2 Run-Time
Environment
Conformant –
Minimum with
Some Optional
and Some
Mandatory Data
Model Elements

Requirements Summary: The SCO is:
• “SCORM Version 1.2 Run-Time Environment

Conformant – Minimum with Some Mandatory Data
Model Elements,” and

• “SCORM Version 1.2 Run-Time Environment
Conformant – Minimum with Some Optional Data Model
Elements.”

None Content will not be SCORM-conformant.

5

The SCORMTM Implementation Guide: A Step-by-Step Approach

Section 3: Analysis — Identify the Business Need

Meta-Data
Desired
Conformance

Description

SCORM Version
1.2 Meta-data
XML
Conformant –
Minimum

Requirements Summary: Content Aggregation, SCO or Asset
Meta-data XML Instance:

• Is a well formed XML Document and
• Is valid against the IMS Learning Resource Metadata

Version 1.2.1 XML Schema Definition (XSD) and
• Contains elements that conform to their corresponding

specified data types and
• Contains all mandatory document elements for the

corresponding meta-data application profile (Content
Aggregation, SCO or Asset) as described in Section 2.2 of
the Content Aggregation Model and

• Elements defined as having restricted vocabularies adhere
to all defined vocabularies as defined in Section 2.2 of the
Content Aggregation Model.

SCORM Version
1.2 Meta-data
XML
Conformant –
Minimum with
Optional
Elements

Requirements Summary: Content Aggregation, SCO or Asset
Meta-data XML Instance:

• Is “SCORM Version 1.2 Meta-data XML Conformant –
Minimum,” and

• Contains one or more elements that are designated as
optional meta-data elements for the corresponding meta-
data application profile (Content Aggregation, SCO or
Asset) as described in Section 2.2 of the Content
Aggregation Model, except for extensions.

Note: If the meta-data instance incorrectly implements one or
more elements that are designated as optional document elements
for the corresponding meta-data application profile (Content
Aggregation, SCO or Asset) as described in Section 2.2 of the
Content Aggregation Model, the meta-data Instance is non-
conformant.

6

The SCORMTM Implementation Guide: A Step-by-Step Approach

Section 3: Analysis — Identify the Business Need

Meta-Data
Desired
Conformance

Description

SCORM Version
1.2 Meta-data
XML
Conformant –
Minimum with
Extensions

Requirements Summary: The Content Aggregation, SCO or Asset
Meta-data XML Instance:

• Is “SCORM Version 1.2 Meta-data XML Conformant –
Minimum,” and

• Contains one or more extensions. The extensions used
must be well-formed and valid according to the
corresponding vendor-provided XML Schema Definition
(XSD).

SCORM Version
1.2 Meta-data
XML
Conformant –
Minimum with
Optional
Elements and
Extensions

Requirements Summary: The Content Aggregation, SCO or Asset
Meta-data XML Instance:

• Is “SCORM Version 1.2 Meta-data XML Conformant –
Minimum with Optional Elements,” and

• Is “SCORM Version 1.2 Meta-data XML Conformant –
Minimum with Extensions.”

None SCORM meta-data will not be used.

7

The SCORMTM Implementation Guide: A Step-by-Step Approach

Section 3: Analysis — Identify the Business Need

8

The SCORMTM Implementation Guide: A Step-by-Step Approach

Content Package
Desired
Conformance

Description

SCORM Version
1.2 Content
Packaging XML
Conformant

Requirements Summary: The Content Package:
• If contained in a Package Interchange File (PIF), then the

PIF is compatible with PKZIP Version 2.04g and
• The Manifest is placed at the root of the Package (e.g.,

ZIP archive or CD-ROM) and
• The Manifest is named “imsmanifest.xml” and
• All supporting control documents are placed at the root of

the PIF or root directory and
• The “imsmanifest.xml” is well-formed XML and
• The “imsmanifest.xml” validates against the IMS Content

Packaging XML Schema Definition (XSD) Version 1.1.2
and

• The “imsmanifest.xml” validates against the ADL
Content Packaging XML Schema Definition (XSD)
Version 1.2 and

• The Content Package contains at least one SCO or Asset
(as defined in the SCORM Content Aggregation Model)
and

• All SCO learning resources identified in the
“imsmanifest.xml” are at a minimum SCO-RTE1 and

• All meta-data used with the “imsmanifest.xml” adheres to
the appropriate SCORM Meta-data Application Profile
requirements.

None Content packages will not be created.

Section 4: Analysis — Learner Analysis

1

The SCORMTM Implementation Guide: A Step-by-Step Approach

Section 4: Analysis — Learner Analysis

4. Analysis – Learner Analysis

What

The learner analysis determines relevant characteristics of the target population. The
learner analysis often includes an examination of prior knowledge, skills and attitudes
toward the content to be taught.

Why

A learner analysis ensures that the training or instruction is tailored to the needs, abilities
and preferences of the target audience and to the specific requirements of adult learners.1
Traditional learner analysis is moderately affected by the SCORM.

As you conduct your learner analysis, keep in mind that a clear distinction must be made
between primary and secondary audiences. Reusability poses a significant challenge. If
the goal in the creation of SCORM-conformant content is to reuse the same content with
multiple audiences, how do you design for all of those audiences and maintain
instructional integrity? The ADL community has identified various mechanisms for
addressing this issue. One potential solution is presented.

How

Job Aide 4-1 — Determining Audience Characteristics

1. Work with the client to identify characteristics of the primary audience.
2. Record primary audience characteristics to be used later when:

•
•

•

Breaking down content into SCOs.
Assigning meta-data to assets, SCOs and content aggregations (See Job Aide 4-2).

3. Work with the client to identify characteristics of the secondary audience.
4. Record secondary audience characteristics to be used later when:

Assigning meta-data to assets, SCOs and content aggregations (See Job Aide 4-2).
5. After learner analysis is completed and relevant audience information is recorded,

consider the additional actions detailed in Job Aide 4-3.

With this approach, characteristics of the primary audience are considered in the content
design and meta-data. Content is designed for a specific audience and can be located
easily (e.g. in a content repository) and used for similar audiences. This approach also
allows the meta-data to reflect potential secondary audiences but, in order to maintain

2

1 Darryl L. Sink and Associates, Inc., The Instructional Developer Workshop Participant’s Binder, 2001,
page 44.

The SCORMTM Implementation Guide: A Step-by-Step Approach

Section 4: Analysis — Learner Analysis

instructional integrity, does not consider those secondary audiences specifically in the
design and breakdown of the content.

Job Aide 4-2 — Meta-data Requirements for Reflecting Primary and
Secondary Audiences

Adapted from SCORM Version 1.2

Directions: Record primary and secondary audience characteristics.

Note: The meta-data included in this exercise may be mandatory or optional for Content
Aggregations, SCOs and Assets. Refer to the SCORM Version 1.2, Section 2.2.4.4 for
additional detail.

Audience
Characteristic

SCORM Meta-data Name Explanation

General Descriptors Keyword Keywords or phrases that
describe the primary audience.

Culture, geographic
location or region

Coverage The span or extent of such
things as time, culture,
geography or region that apply
to the primary audience.

Age Typical Age Range Refers to the developmental
age, if it is different from the
chronological age.

Language Language The primary human language
used by the typical end user of
the resource.

3

The SCORMTM Implementation Guide: A Step-by-Step Approach

Section 4: Analysis — Learner Analysis

Job Aide 4-3 — Additional SCORM Considerations During Learner

Analysis

If Then Refer to
Learner analysis reveals that
the learner may be
overwhelmed by large
amounts of complex content.

Consider learning style when
deciding on the size and complexity
of SCOs.

Section 6

Learner analysis reveals need
for specific content
sequencing approach.

Select sequential, non-sequential,
user-directed, learner-centric or
adaptive sequencing approach,
depending on the capabilities of the
learning management system.

Section 6

Learner analysis reveals the
need for prerequisites.

Ensure that prerequisites are defined
in the SCORM meta-data.

Section 9

Instruction may interrupt
other job-related activities and
the learner may need to leave
the training and return later.

Use the SCORM Data Model to
periodically record the position
where the learner stopped.

Section 7

4

The SCORMTM Implementation Guide: A Step-by-Step Approach

Section 5: Analysis — Context Analysis

5

The SCORMTM Implementation Guide: A Step-by-Step Approach

Section 5: Analysis — Context Analysis

1

The SCORMTM Implementation Guide: A Step-by-Step Approach

Section 5: Analysis — Context Analysis

5. Analysis – Context Analysis

What

Context analysis is the systematic identification of those characteristics of the training
environment that are important to the design of instruction.1 It is during context analysis
that instructional designers seek answers to questions about the size of the audience, who
will deliver the training, where and how frequently the training will be delivered and
what secondary uses exist for the training content.

Why

A context analysis is performed to identify and describe environmental factors that will
affect the design of your training and instruction. Just as the learner analysis is intended
to help target the training to a specific audience, the context analysis is intended to target
the training for delivery in a specific learning environment.

There has been much debate about whether instruction can be designed with multiple
contexts or environments in mind. Traditional instructional design approaches focus on
analyzing and building instruction around a specific context. The SCORM introduces the
concept of learning object reusability and therefore introduces debates about definition of
instructional context. The SCORM introduces a reusability paradox: the most reusable
objects are context-independent, while the best instruction is highly contextualized.
While the debate of multiple contexts continues, you can incorporate SCORM into your
context analysis by reflecting immediate and potential future contexts in SCORM meta-
data. Use Job Aide 5-1 as a guide to the use of SCORM meta-data for reflecting context.

1 Ibid., Sink, page 69.

2

The SCORMTM Implementation Guide: A Step-by-Step Approach

Section 5: Analysis — Context Analysis

How

Job Aide 5-1 — Perform Context Analysis and Reflect Results in
SCORM Meta-data

If Then
The context is closely tied to the
instructional content.

Reflect the context within which the
learning is to take place in SCORM
meta-data elements as described in
Job Aide 5-2.

There are potential secondary uses
for the instruction.

Reflect the primary context for
which the instruction was designed
by using Job Aide 5-2. Reflect
potential secondary audiences by
adding descriptive information to
the SCORM meta-data identified in
Job Aide 5-3.

Job Aide 5-2 — Reflecting Context in SCORM Meta-data

Adapted from SCORM Version 1.2

Directions: Research each type of meta-data using the SCORM Meta-data Information
Model, SCORM Version 1.2. Record contextual information relevant to the instructional
content and keep this information for use when assigning meta-data to assets, SCOs and
content aggregations.

Context
Characteristic

SCORM Meta-data Name Description

Delivery
Environment

Context The principal environment within
which the learning and use of the
resource is intended to take place.

Learning Time Typical Learning Time Approximate or typical time it
takes to work through the
resource.

Resource Use Description Comments on how this resource is
to be used (e.g., instructor
guidelines that come with a
textbook).

Cost Cost “Yes” or “No” to the question of
whether this instructional content

3

The SCORMTM Implementation Guide: A Step-by-Step Approach

Section 5: Analysis — Context Analysis

requires payment by the user.
Copyright and
Other Restrictions

Copyright and Other
Restrictions

“Yes” or “No” to the question of
whether copyright or other
restrictions apply to the use of this
resource.

Job Aide 5-3 — Reflecting Secondary Uses in SCORM Meta-data

Adapted from SCORM Version 1.2

Directions: Research each type of meta-data using the SCORM Meta-data Information
Model, SCORM Version 1.2. Record information about secondary uses for the
instructional content using each type of meta-data listed below. Because there is no
clearly identified place for reflecting secondary uses within SCORM meta-data, a
combination of the meta-data listed here is recommended.

Context
Characteristic

SCORM Meta-data Name Description

Description A textual description of the
content of the resource being
described.

Secondary Uses

Keyword Keywords or phrases describing
secondary uses for this resource.

4

The SCORMTM Implementation Guide: A Step-by-Step Approach

Section 5: Analysis — Context Analysis

5

The SCORMTM Implementation Guide: A Step-by-Step Approach

Section 6: Design — Content Sequencing

1

The SCORMTM Implementation Guide: A Step-by-Step Approach

Sec
tion 6: Design — Content Sequencing

6. Design – Content Sequencing

What

Sequencing is the efficient ordering of content in a way that helps the learner achieve the
objectives. Several sequencing strategies may be used within the same training—
possibly a different one for each objective, if applicable.

Why

Organizing the content according to a specific sequencing schema provides an orderly
method for presenting the content that is likely to match the learner’s expectations.1
Sequential learning paths are simple and reliable; they let the designer control the order
of experiences encountered by the learner.2

How

When designing your content sequence(s), it is necessary to think in terms of Sharable
Content Objects (SCOs). One source of confusion about the size of SCOs is the
relatively new idea of “learning objects.” There are people in the e-learning community
who have strong beliefs about what may constitute a “true” learning object. Some think
that a learning object teaches one idea or addresses one single learning objective; others
insist that a learning object must include an assessment. Definitions vary widely
depending on the learning design theory being applied. However, each situation varies
and the approach depends largely on the preferences of the designer and needs of the
client.

The SCORM can enable a number of different approaches and can accommodate a
variety of design paradigms. For example, one definition of a learning design might
include discrete activities such as the following:

• A statement of the objective, introductory material, an overview and/or advanced
organizer

• A unit of instruction or an instructional activity (tutorial, simulation or media
experience)

• An assessment or series of assessments.

An important part of the design process is deciding how to organize content to create
SCOs. Sometimes, deciding what is a SCO is a judgment call; however, it usually is

1 Morrison, Ross, and Kemp, Designing Effective Instruction, page 120, John Wiley & Sons, Inc., 2001,
ISBN: 0-471-38795-9.

2

The SCORMTM Implementation Guide: A Step-by-Step Approach

2 William Horton, Designing Web-Based Training, page 176, John Wiley & Sons, Inc., 2000, ISBN: 0-
471-35614-X.

Section 6: Design — Content Sequencing

based on the possible reusability of a SCO (perhaps in the same design) or a need for the
LMS to “know” and keep track of the learner. It is possible to create SCOs that include
different types or groups of learning activities.

The following possible rationales can guide the process of deciding on the SCO construct
to meet the design needs.

SCO Construct #1

SCO #1

Post Test Instruction Introduction

Rationale: The introduction, instruction and post-test activities might be closely related
and it would never make sense to break them apart and use them elsewhere. Therefore,
one SCO is adequate in this situation.

SCO Construct #2
 SCO #2 SCO #1

Post Test Instruction Introduction

Rationale: The introduction and the instruction are so conceptually intertwined that they
are best delivered as one unified activity. The post-test, however, might assess mastery
of a particular skill and might be used elsewhere, thus it makes sense to separate it.
In addition, it might be desirable for the Learning Management System (LMS) to “know”
when SCO #1 is completed so it can see that the learning material was completed, but the
post-test might not have been started. This would be useful if the learner wanted to log
out and return later and could begin at SCO #2.

3

The SCORMTM Implementation Guide: A Step-by-Step Approach

Section 6: Design — Content Sequencing

SCO Construct #3
 SCO #2 SCO #1

Post Test Instruction Introduction

Rationale: Imagine an introductory experience that might contextually relate the
instruction and assessment, perhaps using an advanced organizer that directs the learner
to pay particular attention to one specific learning objective. Later in the course, the
same instruction and assessment (SCO #2) might be introduced with a different learning
objective.

SCO Construct #4

SCO #3 SCO #2 SCO #1

Post Test Instruction Introduction

Rationale: Each of the activities are separate SCOs that could be reused elsewhere. The
advantage to this approach is that the progress through the learning process is known to
the LMS, since it tracks where (in which SCO) the learner is and then delivers the next
activity.

Another advantage is that later, it becomes easy to exchange SCOs with newer ones or
different ones for a slightly different topic. For example, imagine an introduction that
reads, “Pay attention to this objective in the instruction you are about to receive.” The
post-test might be designed only to assess that particular objective. Later in the course,
another introduction with a different objective but same instruction can be used and then
a different post-test can be delivered for the new objective. Thus, reuse is enabled and
the LMS can track the mastery levels of different learning objectives.

4

The SCORMTM Implementation Guide: A Step-by-Step Approach

Section 6: Design — Content Sequencing

It is a good strategy to create SCOs at an individual activity level so that an LMS can
keep track of learner progress. Let the goals of your design guide you through the
decision process for defining a SCO.

5

The SCORMTM Implementation Guide: A Step-by-Step Approach

Section 6: Design — Content Sequencing

6

The SCORMTM Implementation Guide: A Step-by-Step Approach

Section 7: Design — Design Documents

1

The SCORMTM Implementation Guide: A Step-by-Step Approach

Section 7: Design — Design Documents

7. Design — Design Documents

What

The design documents are created to provide a framework or blueprint for the course.
They can be used to communicate SCORM calls and tracking abilities to the developer.
The design documents are used to outline the Sharable Content Objects (SCOs) and
assets. For the purpose of this guide, the design documents will be represented as
storyboards. Storyboards represent the complete, screen-by-screen layout of the module
structure.

Why

Storyboards communicate tracking, content sequencing and objective placement and are
an important planning tool for instructional design and SCORM implementation. They
will help the designer map out the course and communicate all SCORM calls.

How

The SCORM process will affect the design of the content and storyboards slightly. Here
are some items to consider when designing SCORM-conformant content and/or
storyboards.

Learning Management Systems
Navigation from SCO to SCO will occur within the Learning Management System
(LMS) for SCORM-conformant content. At present, SCORM 1.2 does not mandate
navigation schemes. Typically, there are two ways to navigate from one resource to
another within an LMS. The first is to use the Table of Contents (TOC) provided by the
LMS. The designer can define the titles of the TOC within the manifest file. The second
is to use the Next/Previous buttons provided by the LMS to take the user from SCO to
SCO. The designer may choose to use a combination of these two approaches or may not
have both of these options available, depending on which LMS is being used.

User Interface
Use the following examples and best practices to help you design your user interface to
run through an LMS:

• Use a Vector-based background graphic and set the parameters to be scalable
instead of fixed

• To assure that buttons on the screen will always be viewable, do not set the
buttons in a fixed position

2

The SCORMTM Implementation Guide: A Step-by-Step Approach

Section 7: Design — Design Documents

• For testing purposes, develop for the equipment the target audience will be using.
If the text can be read, then it is likely a good design for the majority of users.

As shown in Figures 7-1 and 7-2, this particular LMS has a TOC button that will launch
the TOC in another window. The learner must select the TOC to navigate from SCO to
SCO. To navigate within a SCO page by page the learner uses the Back button (the
button on the left) at the bottom of the content. The square button is a rollover image that
signifies that the learner is done with the SCO and is placed by the developer to call
LMSFinish.

Figure 7-1: LMS With Table of Contents

3

The SCORMTM Implementation Guide: A Step-by-Step Approach

Section 7: Design — Design Documents

Figure 7-2: Result of Selecting Table of Contents Button

4

The SCORMTM Implementation Guide: A Step-by-Step Approach

Section 7: Design — Design Documents

Figure 7-3 shows the ADL Sample Run-Time Environment (RTE) using the choice
method provided by the RTE. The learner will navigate from SCO to SCO by using the
TOC provided by the RTE (located on the left side of the screen).

Figure 7-3: Sample RTE Using the Choice Method

5

The SCORMTM Implementation Guide: A Step-by-Step Approach

Section 7: Design — Design Documents

Figure 7-4 shows the ADL Sample Run-Time Environment (RTE) using the flow method
provided by the RTE. The learner will navigate from SCO to SCO by using the
Next/Previous buttons provided by the RTE.

Figure 7-4: Sample RTE Using the Flow Method

Title of SCOs
To promote reusability, avoid titling the SCOs with lesson, module, unit, numbers, etc.
Instead, assign titles that reflect the SCO’s content. For example, instead of titling the
SCO “Lesson 3 – The SCORM,” it should be titled simply, “The SCORM.”

Acronyms

6

Tanner, Caudill and Hamel of the University of Central Florida Institute for Simulation
and Training and Blickensderfer from Naval Air Systems Command, Training Systems
Division share their lessons learned in the article, “Building an Online Course by
Developing and Sequencing SCOs.” This article documents lessons learned throughout
the design and development process of a SCORM-conformant Web-based training. One
lesson deals with using acronyms in learning content. The authors state that in order to
avoid confusion about what the acronym stands for, it is important to spell out the

The SCORMTM Implementation Guide: A Step-by-Step Approach

Section 7: Design — Design Documents

acronym at the beginning of each SCO. For example, in SCO 1, the designer defines
“SCORM” as the “Sharable Content Object Reference Model,” and should do so in SCO
2 as well, with the understanding that the learner may not have seen SCO 1.

Application Program Interface (API)

The API defines a standardized means for SCOs to communicate with the LMS. The
LMS does not initiate communications; SCO resources initiate all communication to the
API adapter, which in turn communicates with the LMS. The API also facilitates the
communication of the data model elements to the LMS. SCOs will communicate with
the API via JavaScript calls. JavaScript is the common thread between SCOs and LMSs.
Here are some general rules to be used in conjunction with the API:

• Function names are case-sensitive and must be expressed as shown in the
SCORM

• Function parameters or arguments are case-sensitive; all parameters should be
lower case

• Each call to an API function, other than the error handling functions, resets the
error code.

The functions of the API include the following:

• LMSinitialize and LMSfinish – initiates and closes the communication with the
LMS

• Get and set values – works with the data model elements to collect and store
information by the LMS

• LMS commit – tells the LMS to persist any set data model elements
• LMSgetlasterror LMSgeterrorstring LMSgetdiagnostic – used by the SCO to

allow error messages to be viewed when an error has occurred.

Data Model Elements
Data model elements are used to interpret the design and tracking needs into a SCORM
call using the API. They provide a common data model to ensure that different LMS
environments can track a defined set of information about SCOs. If, for example, it is
determined that tracking a learner’s score is a general requirement, then it is necessary to
establish a common way for content to report scores to the LMS; SCORM helps to
accomplish this. If SCOs use their own unique scoring representations, LMSs may not
know how to receive, store or process the information. A data model element can be
“read,” “write” or “read/write.” “Read” means that a SCO can only get a value and
“write” means that the SCO can set a value. Figure 7-5 shows the data model categories
available for use by the SCO.

7

The SCORMTM Implementation Guide: A Step-by-Step Approach

Section 7: Design — Design Documents

Figure 7-5: Data Model Categories Available for use by the SCO

8

The SCORMTM Implementation Guide: A Step-by-Step Approach

Section 7: Design — Design Documents

Job Aide 7-1 — Data Model Elements and Their Uses

Note: This example is just one method in which the data model elements can be used.
You can use the elements in any way that you deem necessary, as long as it is supported
by the SCORM.

Example Usage Data Model Elements Accessibility
Parent: cmi.core – Information required to be furnished by all LMSs. What all SCOs
may depend on to start up.
Gets a list of elements that are supported by
the LMS.
Determines if the elements that you use are
supported by the LMS to get and set values.

cmi.core_children Read

Gets a unique learner ID for the course that
is set by the LMS.
Displays the user’s ID on the screen
throughout the SCO.

cmi.core.student_id Read

Gets the learner’s name.
Displays the learner’s name on the screen
throughout the SCO.

cmi.core.student_name Read

Provides check point progress through the
SCO in order for the learner to return to
where they left off in the SCO. This
element works well with multiple-page
SCOs.

cmi.core.lesson_location Read/Write

Determines if the SCO is being taken for
credit.
If the SCO is being taken for credit, the
SCO can communicate that status back to
the LMS and then make an additional call to
set up other elements.
If the SCO is not being taken for credit, the
SCO can send that information back to the
LMS and then turn off additional elements.
Commonly used in conjunction with
lesson_mode.

cmi.core.credit Read

Determines the status of the SCO.
Determines if the SCO is passed, failed,
incomplete, browsed or not attempted. This
can be used to lock learners out of a SCO or
make them take it again, depending on the
status.

cmi.core.lesson_status Read/Write

9

The SCORMTM Implementation Guide: A Step-by-Step Approach

Section 7: Design — Design Documents

Example Usage Data Model Elements Accessibility

Determines if it is the first time that the
SCO has been launched.
If this is not the first time the SCO has been
launched, then a welcome back message
could be displayed.
If it is the first time the learner is visiting
the SCO, a different welcome message
could be displayed.

cmi.core.entry Read

Parent: cmi.core.score – indication of the performance of the learner
Determines if the elements that you are
using are supported by the LMS.

cmi.core.score_children Read

Determines the performance of the learner
during the last attempt on the SCO.

cmi.core.score.raw Read/Write

Determines the maximum score a learner
achieved on the SCO.
Could be used for testing purposes. For
example, there may be a possible 100 points
on an exam, so the maximum score would
be 100.

cmi.core.score.max Read/Write

Determines the minimum score that a
learner could have received on an exam.
Could be used for testing purposes. The
minimum score that the learner may receive
could be 0.

cmi.core.score.min Read/Write

Calculates total accumulated time the
learner spent in a SCO.
Could be used to evaluate the effectiveness
of the SCO. For example, if the SCO was
supposed to take 10 minutes to complete
and the majority of the learners are
spending 2 hours in the SCO in conjunction
with other criteria, it may be determined
that the effectiveness of the content needs to
be reviewed.

cmi.core.total_time Read

Determines the mode the learner was in
while in the SCO.
Browse – previewing material.
Normal – taking the SCO.
Review –going through the material again.
This element would be a good indicator on

cmi.core.lesson_mode Read

10

The SCORMTM Implementation Guide: A Step-by-Step Approach

Section 7: Design — Design Documents

Example Usage Data Model Elements Accessibility
how often the learner visited the SCO and in
which mode. Could be used to evaluate the
learner’s performance.
Indicates how the learner left the SCO.
Time-out – the learner ran out of time and
the SCO forced them out.
Suspend – learner left the SCO in order to
return to it later.
Logout – learner left the SCO by logging
out of the LMS.
Used to let the designer know if there is
something that may need to be changed
within a SCO. Example: the learner may
need additional time to complete the SCO.
Used in conjunction with cmi.core.entry.

cmi.core.exit Write

Determines the time spent in a SCO each
time the learner enters that SCO.

cmi.core.session_time Write

Parent: cmi.suspend_data – information that SCOs set upon premature exit of the SCO,
for retrieval upon restart.
Parent: cmi.launch_data – information represented in the manifest specific to a SCO.
Variables a SCO needs to initialize and set up.
Parent: cmi.comments – mechanism for collecting and distributing comments for a SCO.
Identifies feedback about the SCO.
Asks questions about the SCO.
Makes general comments/suggestions about
the SCO.
Gets learner feedback about the SCO.
Used at the end of a SCO for evaluation of
the SCO.

cmi.comments Read/Write

Writes and displays on screen instructor
hints/comments/suggestions.

cmi.comments_from_L
MS

Read

Parent: cmi.objectives – identifies how a learner has performed on individual objectives
within a SCO.
Determines what is supported by the LMS
under cmi.objectives category.

cmi.objectives._children

Read

Determines the current number of
objectives within the SCO.

cmi.objectives._count Read

Identifies the objectives using a specific
objective ID. Will use this objective ID to
set mastery of the objective and map it to
other elements.

cmi.objectives.n.id Read/Write

11

The SCORMTM Implementation Guide: A Step-by-Step Approach

Section 7: Design — Design Documents

Example Usage Data Model Elements Accessibility
Parent: cmi.objectives.n.score- each objective can contain an associated score.
Determines which elements are supported
by the LMS.

cmi.objectives.n.score._
children

Read

Determines the learner performance after
each attempt on an objective.
Can be used in conjunction with the
interaction elements.

cmi.objectives.n.score.ra
w

Read/Write

Maximum score that a learner could have
received on an objective.
Can be used to score a particular objective.

cmi.objectives.n.score.m
ax

Read/Write

Minimum score that a learner could have
received on an objective.
Can be used to score a particular objective.

cmi.objectives.n.score.m
in

Read/Write

Determines a status of the objectives.
Determines if the learner has passed, failed,
completed, not completed, browsed or not
attempted an objective.
Used in conjunction with interaction
elements to link activities to the objective.

cmi.objectives.n.status Read/Write

Parent: cmi.student_data – information to support customization of a SCO based on a
learner’s performance.
Determines the score that needs to be
achieved to complete the SCO.
Used to determine if there is preset mastery
of the SCO.

cmi.student_data.master
y_score

Read

Determines the maximum time a learner is
allowed to work in a particular SCO.
Defined in the manifest; determines the
maximum time the learner is allowed in the
SCO.

cmi.student_data.max_ti
me_allowed

Read

When the maximum time that the learner is
allowed in a SCO is reached, the designer
may set one of the following options:

• Learner exits the SCO
• Learner continues

Displays a message to the learner when the
SCO has timed out.

cmi.student_data.time_li
mit_action

Read

12

The SCORMTM Implementation Guide: A Step-by-Step Approach

Section 7: Design — Design Documents

Example Usage Data Model Elements Accessibility
Parent: cmi.student_preference – selected options that are appropriate for subsequent
SCOs. In each of the following, suspend_data could be used to keep track of the learner’s
preferences and they then could be used in each SCO.
Determines which elements are supported
by the LMS.

cmi.student_preference.
_children

Read

Determines whether the audio of a SCO is
turned on or off.
Sets audio to on or off according to a
learner’s preference.

cmi.student_preference.
audio

Read/Write

Identifies the language in which information
should be presented if the SCO has multi-
language capability.
Identifies and sets the language from the
LMS that the learner prefers.

cmi.student_preference_
language

Read/Write

Allows learner to change the pace of the
content (example: text, simulation, video,
voice over, etc.).

cmi.student_preference.
speed

Read/Write

Turns off the audio and display it in a text
window, if the learner prefers.
Leaves the audio on and request that the text
be presented simultaneously with the audio,
if the learner prefers.
Makes the text disappear so that only the
audio and graphics are available, if the
learner prefers.

cmi.student_preference.t
ext

Read/Write

Parent: cmi.interactions – is a recognized and recordable input of group of inputs from
the learner to the computer.
Determines which elements are supported
by the LMS.

cmi.interactions._childre
n

Read

Evaluates how many times a learner has
gone to a specific interaction.
This can be used for evaluation purposes. If
a learner keeps going back to a particular
interaction, they may need remediation in
this area.

cmi.interactions._count Read

Identifies an interaction using a unique
identifier.

cmi.interactions.n.id Write

Parent: cmi.interactions.n.objectives – interaction data models will be very effective for
keeping detailed statistics on evaluations and exam questions. The interaction data will
help the designer determine which questions will need additional rework from a formative
and summative evaluation.

13

The SCORMTM Implementation Guide: A Step-by-Step Approach

Section 7: Design — Design Documents

Example Usage Data Model Elements Accessibility
SCO will determine the number of
objectives set.
Used to determine which objective ID
records to set in correlation with the
interaction.

cmi.interactions.n.object
ives._count

Read

Determines the ID of the objectives that
relate to the interaction.
Then can be used to evaluate the interaction
in relation to the objective.

cmi.interactions.n.object
ives.n.id

Write

Determines the time the learner has been
presented with a particular interaction.
Used in the evaluation of the particular
interaction.

cmi.interactions.n.time Write

Indicates the type of interaction that is
taking place.
True/false – a catch-all question with only
two possible answers.
Choice – a question with a limited number
of predefined responses from which the
learner may select. Each response is
numbered or lettered. One or more
responses may be correct.
Fill-in – a question with a simple one- or
few-word answer. The answer/response is
not predefined, but must be created by the
learner.
Matching – a question with one or two sets
of items. Two or more of the members of
these sets are related. Answering the
question requires finding and matching
related members.
Performance – a question that is in some
ways similar to a multiple-choice question;
however, instead of selecting a written
answer, the learner must perform a task.
Sequencing – a question in which the
learner is required to identify a logical order
for the member of a list.
Likert Scale – a question that offers the
learner a group of alternatives on a
continuum. The response generally is based

cmi.interactions.n.type Write

14

The SCORMTM Implementation Guide: A Step-by-Step Approach

Section 7: Design — Design Documents

Example Usage Data Model Elements Accessibility
on the learner’s opinion or attitude.
Numeric – simple number with or without a
decimal point required to answer a question.
Correct answer may be a single number
within a range of numbers.
Determines the correct responses stored by
the LMS.

cmi.interactions.n.correc
t_responses

Read

SCOs could use this number to determine
which pattern record to set.

cmi.interactions.n.correc
t_responses._count

Read

Corrects response to the interaction
provided by the SCO.

cmi.interactions.n.correc
t_responses.n.pattern

Write

Determines the weight (importance) of the
interaction. One question might have a
weight of 50, while another question might
have a weight of 15.

cmi.interactions.n.weigh
ting

Write

Determines the learner’s response to a
question.

cmi.interactions.n.stude
nt_reponse

Write

The actual result of a learner’s response
• Correct
• Wrong
• Unanticipated
• Neutral

cmi.interactions.n.result Write

Determines how long the learner took to
answer the question.

cmi.interactions.n.latenc
y

Write

15

The SCORMTM Implementation Guide: A Step-by-Step Approach

Section 11: Develop Product — Create Content Package

16

The SCORMTM Implementation Guide: A Step-by-Step Approach

Section 8: Develop Product — Create Metadata for Assets

1

The SCORMTM Implementation Guide: A Step-by-Step Approach

Section 8: Develop Product — Create Metadata for Assets

8. Develop Product — Create Meta-data for Assets

What

According to the SCORM Content Aggregation Model, assets are electronic
representations of media, text, images, sound, Web pages, assessment objects or other
pieces of information that can be delivered in a Web environment. Assets include file
types such as .doc, .wav, .jpeg, .fla, .mov, .gif, .avi and .html. A Sharable Content Object
(SCO), however, is a collection of assets that communicate with an LMS.

An asset can be tagged with meta-data to allow for a clear description of the information
within an asset. Tagged assets also allow search and discovery within content
repositories and Learning Content Management Systems (LCMSs), thereby enhancing
the opportunities for reuse. Meta-data should reference only one item: if there are
multiple versions or revisions to an item, each iteration should have its own unique meta-
data. Asset meta-data is usually context-independent meta-data and is not written with
respect to the content hierarchy.

The SCORM provides nine categories of meta-data for both assets and SCOs, each with
several sub-categories. The nine categories are the same for both assets and SCOs;
however, the mandatory categories differ for both. The nine categories are as follows:

1. General – information that describes the resource as a whole
2. Lifecycle – features related to the history and current state of the resource and the

individuals who have created the resource
3. Meta-metadata – information about the meta-data record
4. Technical – technical requirements and characteristics of the resource
5. Educational – educational characteristics of the resource
6. Rights – intellectual property rights and conditions of use for the resource
7. Relation – the relationship between this resource and other targeted resources
8. Annotation – comments on the educational use of the resource and information on when

and by whom the comments were created
9. Classification – where this resource falls within a particular classification system.

Why

Assets provide a common method of organization, enabling learning resources to be
described in a common way. Although currently meta-data is optional in the
development of SCORM-conformant content, there are reasons that a course developer
would want/need to use meta-data:

• There is a need for reuse and discoverability during content creation

2

The SCORMTM Implementation Guide: A Step-by-Step Approach

Section 8: Develop Product — Create Metadata for Assets

• To describe the asset in an informational way
• To provide authors with design information and intent
• To make the asset searchable in a content repository
• Any other reason that the designer thinks is necessary.

When

It is considered best practice that, on completion of each graphic, video, sound or asset,
the person in charge (e.g. graphic designer, videographer, etc.) of creating that asset
should develop and write the meta-data for the asset to remember all the detailed
information about the asset.

How

The SCORM does not affect the creation of the asset itself, only the addition of the asset
meta-data. Create your asset as you would traditionally, then use Job Aide 8-1 to tag it
with meta-data.

Steps:

1. Refer to the analysis phase to determine if you will use meta-data and if so, to
what level of conformance.

2. Refer to Job Aide 8-1 to determine what belongs in each field of meta-data.
3. Test the asset for accuracy by using the SCORM Version 1.2 Test Suite Version

1.2.2 meta-data conformance test.

3

The SCORMTM Implementation Guide: A Step-by-Step Approach

Section 8: Develop Product — Create Metadata for Assets

Job Aide 8-1 — Writing Asset Meta-data

Adapted from the SCORM Content Aggregation Model

Legend
• NR = Hierarchical Number System
• Explanation = detailed description of the element
• Name = Element Name
• Mandatory = provides a Yes/No response on whether the SCO must implement the

element.

Refer to the SCORM Content Aggregation Model for additional details on the following
chart.

NR Name Explanation Mandatory
1 General Describes the resource as a whole. Y
1.1 Identifier Globally Unique label that identifies the

resource.
Y

1.2 Title Name given to the asset. Y
1.3 Catalog Entry Sub-category that defines an entry within a

catalog assigned to the resource.
N

1.3.1 Catalog The name of the catalog. N
1.3.2 Entry Actual value of the entry within the catalog. N
1.4 Language Language used with this asset to communicate

to the intended user.
N

1.5 Description Textual description of the asset. Y
1.6 Keyword Keywords or phases describing the asset. N
1.7 Coverage The span or extent of such things as time,

culture, geography or region that applies to the
resource.

N

1.8 Structure Underlying structure of the asset:
• Collection
• Mixed
• Linear
• Hierarchical
• Networked
• Branched
• Parceled
• Atomic.

N

4

The SCORMTM Implementation Guide: A Step-by-Step Approach

Section 8: Develop Product — Create Metadata for Assets

NR Name Explanation Mandatory
1.9 Aggregation

Level
Functional granularity:
1 - lowest level of granularity
2 - collection of atoms.

N

2.0 Lifecycle Describes the history and current state of the
asset

N

2.1 Version The edition of the asset. N
2.2 Status The state of the asset:

• Draft
• Final
• Revised
• Unavailable.

N

2.3 Contribute People or organizations that have affected the
state of the asset.

N

2.3.1 Role List one only:
• Author
• Publisher
• Unknown
• Initiator
• Terminator
• Validator
• Editor
• Graphical Designer
• Technical implementer
• Content Provider
• Technical Validator
• Educational Validator
• Script Writer
• Instructional Designer.

N

2.3.2 Entity The identification and information about the
people or organizations contributing to this
resource.

N

2.3.3 Date Date of contribution. N
3.0 Meta –

Metadata
Describes the specific information about this
meta-data record itself.

Y

3.1 Identifier Globally unique label that identifies this meta-
data record.

Y

3.2 Catalog Entry Defines an entry within a catalog. N
3.3.2 Entity Identification of and information about the

people or organizations contributing to this
meta-data instance, most relevant first.

N

5

The SCORMTM Implementation Guide: A Step-by-Step Approach

Section 8: Develop Product — Create Metadata for Assets

NR Name Explanation Mandatory
3.3.3 Date The date the asset was created. N
3.4 Meta-data

Schema
The name and version of the authoritative
specification used to create this meta-data.

Y

3.5 Language Language of the meta-data instance (may be a
different language than that of the content).

N

4.0 Technical Describes the technical requirements and
characteristics of this resource.

Y

4.1 Format Technical data types that identify the software
needed to access the resource. The string is
restricted to either a MIME type or “non-
digital.”

Y

4.2 Size The size of the digital resource in bytes. N
4.3 Location A string that is used to access this resource. It

may be a location URL or a method that
resolves to a location URL.

Y

4.4 Requirement Describes the technical capabilities required to
use this resource.

N

4.4.1 Type The technology required to use this resource. N
4.4.2 Name Name of the required technology to use

resource.
N

4.4.3 Minimum
Version

Lowest possible version of the required
technology to use this resource.

N

4.4.4 Maximum
Version

Highest version of the technology known to
support the use of this resource.

N

4.5 Installation
Remarks

Description of how to install this resource. N

4.6 Other
Platform
Requirements

Information about other software and
hardware.

N

4.7 Duration Time continuous resource takes when played at
intended speed.

N

5.0 Educational Describes the key educational or pedagogical
characteristics of this resource.

N

5.1 Interactivity The flow of interaction between the resource
and the intended user.

N

5.2 Learning
Resource
Type

Specific kind of resource:
• Exercise
• Questionnaire
• Figure
• Index

N

6

The SCORMTM Implementation Guide: A Step-by-Step Approach

Section 8: Develop Product — Create Metadata for Assets

NR Name Explanation Mandatory
• Exam
• Problem statement
• Simulation
• Diagram
• Graph
• Slide
• Narrative text
• Experiment
• Self assessment.

5.3 Interactivity
Level

Defines the degree of interactivity between the
end user and this resource:

• Very low
• Low
• Medium
• High
• Very high.

N

5.4 Semantic
density

Defines a subjective measure of the resource’s
usefulness compared to its size or duration:

• Very low
• Low
• Medium
• High
• Very high.

N

5.5 Intended end
user role

Principal user(s) for which the resource was
designed:

• Teacher
• Author
• Learner
• Manager.

N

5.6 Context Principal environment within which the
learning and use of the resource is intended to
take place:

• Primary education
• Secondary education
• Higher education
• University first cycle
• University second cycle
• University postgrade
• Technical school first cycle

N

7

The SCORMTM Implementation Guide: A Step-by-Step Approach

Section 8: Develop Product — Create Metadata for Assets

NR Name Explanation Mandatory
• Technical school second cycle
• Professional formation
• Continuous formation
• Vocational training.

5.7 Typical age
range

Age range of the typical user. N

5.8 Difficulty Level of difficulty for the typical target
audience to complete the resource successfully:

• Very easy
• Easy
• Medium
• Difficult
• Very difficult.

N

5.9 Typical
learning time

Approximate or typical time it takes to work
with this resource.

N

5.10 Description Comments on how this resource is to be used. N
5.11 Language The language used by the typical audience. N
6.0 Rights Describes the intellectual property rights and

conditions used for this resource.
Y

6.1 Cost Whether use of the resource requires payment. Y
6.2 Copyright and

other
restrictions

Whether copyright or other restrictions apply to
the use of this resource.

Y

6.3 Description Comments on the conditions of this resource. N
7.0 Relation Defines the relationship between this resource

and other resources, if any.
N

7.1 Kind Nature of the relationship between this
resource and the target resource (identified by
7.2, relation.resource):

• Ispartof
• Haspart
• Isversionof
• Hasversion
• Isformatof
• Hasformat
• References
• Isreferencedby
• Isbasedon
• Isbasison
• Isbasisfor

N

8

The SCORMTM Implementation Guide: A Step-by-Step Approach

Section 8: Develop Product — Create Metadata for Assets

NR Name Explanation Mandatory
• Requires
• Isrequiredby.

7.2 Resource The target resource that this relationship
references.

N

7.2.1 Identifier Unique identifier of the target resource. Y
7.2.3 Catalog entry Defines an entry within a catalog assigned to

this resource.
N

7.2.3.1 Catalog The name of the catalog. N
7.2.3.2 Entry Actual value of the entry within the catalog. N
8.0 Annotation Provides comments on the educational use of

this resource, who created this annotation and
when,

N

8.1 Person The person who created this annotation. N
8.2 Date Date that this annotation was created N
8.3 Description The content of this annotation (a more detailed

description of the elements in this sub-
category).

N

9.0 Classification Describes where this resource is placed within
a particular classification system.

N

9.1 Purpose The purpose of classifying the resource:
• Discipline
• Idea
• Prerequisites
• Educational objectives
• Accessibility restrictions
• Educational level
• Skill level
• Security level.

N

9.2 Taxonpath Taxonomic path in a specific classification
system. Each succeeding level is refinement in
the definition of the higher level.

N

9.2.1 Source The name of the classification system. N
9.2.2. Taxon Describes a particular term within a

hierarchical classification system or taxonomy.
Node that has a defined label or term.

N

9.2.2.1 Id The identifier of the taxon, such as number or
letter combination, provided by the source of
the taxonomy.

N

9.2.2.2 Entry The textual label of the taxon. N
9.3 Description Description of the resource relative to the N

9

The SCORMTM Implementation Guide: A Step-by-Step Approach

Section 8: Develop Product — Create Metadata for Assets

NR Name Explanation Mandatory
stated.

9.4 Keyword Keywords and phrases describing the resource
relative to the stated 9.1: classification.
Purpose of this specific classification, such as
accessibility, security level, etc. (most relevant
first).

N

10

The SCORMTM Implementation Guide: A Step-by-Step Approach

Section 8: Develop Product — Create Metadata for Assets

11

The SCORMTM Implementation Guide: A Step-by-Step Approach

Section 9: Develop Product — Create SCOs

9-1

The SCORMTM Implementation Guide: A Step-by-Step Approach

Section 9: Develop Product — Create SCOs

9-1

The SCORMTM Implementation Guide: A Step-by-Step Approach

Section 9: Develop Product — Create SCOs

9. Develop Product — Create SCOs

What

 Sharable Content Objects (SCOs) are learning activities that are delivered to the learner
and “tracked” by a Learning Management System (LMS). SCOs represent a collection of
one or more assets that utilize the SCORM Run-Time Environment (RTE) to
communicate with the LMS.

A SCO represents the lowest level of granularity of learning resources that can be tracked
by an LMS. The SCORM does not impose any restraints on the size of the SCO;
however, for best practices, see the Content Sequencing section (Section 6).

A SCO, like an asset, can be described with meta-data to allow for search and discovery
by providing descriptive information about the content represented in the SCO. With the
use of meta-data, SCOs can become searchable within content repositories, thereby
enhancing opportunities for reuse.

A SCO is required to adhere to the SCORM RTE. The SCO must have a means to locate
an LMS’s API Adapter and must contain minimum API calls [LMSInitialize(“”) and
LMSFinish(“”)]. There is no obligation to implement any of the other API calls, since
they are optional and depend on the nature of the content.

Participation in the SCORM RTE also means that a SCO may be launched only by an
LMS. A SCO may not call another SCO.

Why

The requirements that a SCO participate in the SCORM RTE yield the following
benefits:

• Any LMS that supports the SCORM RTE can launch and track SCOs, regardless
of who generated them

• The SCO should perform consistently, no matter what LMS is being used.

Although meta-data is optional in the development of SCORM-conformant content, there
are reasons that a course developer would want/need to use meta-data for a SCO:

• If there is a need for reusability and discoverability
• To describe the SCO in an informational way
• To provide authors with design information and intent
• To make the SCO searchable in a content repository
• Any other reason that the designer thinks is necessary.

9-2

The SCORMTM Implementation Guide: A Step-by-Step Approach

Section 9: Develop Product — Create SCOs

How

Create an HTML file and begin to write the SCO as you normally would.
Example:
<html>
 <head>
 <title>Simple SCO Example</title>

The mandatory API function calls are (LMSInitialize(), LMSFinish()). The ability to
make calls to the data model via LMSSetValue() and LMSGetValue also can be added
here. The “abnormalExit()” and “normalExit()” functions have been added here as an
example of how you could handle exiting a SCO properly.
Example:
<script type="text/javascript">
 // local variable definitions used for finding the API
 var apiHandle = null;
 var API = null;
 var findAPITries = 0;

 // local variable used to keep from calling LMSFinish more than once
 var finishCalled = 0;

/***

 **
 ** Function findAPI(win)
 ** Inputs: win - a Window Object
 ** Return: If an API object is found, it's returned; otherwise, null is returned
 **
 ** Description:
 ** This function looks for an object named API in parent and opener windows
 **

**
*******/
 function findAPI(win)
 {
 while ((win.API == null) && (win.parent != null) && (win.parent != win))
 {
 findAPITries++;
 // Note: 7 is an arbitrary number, but should be more than sufficient

9-3

The SCORMTM Implementation Guide: A Step-by-Step Approach

Section 9: Develop Product — Create SCOs

 if (findAPITries > 7)
 {
 alert("Error finding API -- too deeply nested.");
 return null;
 }

 win = win.parent;

 }
 return win.API;
 }

/***

 **
 ** Function getAPI()
 ** Inputs: none
 ** Return: If an API object is found, it's returned; otherwise, null is returned
 **
 ** Description:
 ** This function looks for an object named API, first in the current window's
 ** frame hierarchy and then, if necessary, in the current window's opener window
 ** hierarchy (if there is an opener window).
 **

**
*******/
 function getAPI()
 {
 var theAPI = findAPI(window);
 if ((theAPI == null) && (window.opener != null) && (typeof(window.opener) !=
"undefined"))
 {
 theAPI = findAPI(window.opener);
 }
 if (theAPI == null)
 {
 alert("Unable to find an API adapter");
 }
 return theAPI
 }

9-4

The SCORMTM Implementation Guide: A Step-by-Step Approach

Section 9: Develop Product — Create SCOs

/***

 **
 ** Function getAPIHandle()
 ** Inputs: None
 ** Return: value contained by APIHandle
 **
 ** Description:
 ** Returns the handle to API object if it was previously set;
 ** otherwise, it returns null
 **

**
*******/
 function getAPIHandle()
 {
 if (apiHandle == null)
 {
 apiHandle = getAPI();
 }

 return apiHandle;
 }

/**
 **
 ** Function: doLMSInitialize()
 ** Inputs: None
 ** Return: CMIBoolean true if the initialization was successful or
 ** CMIBoolean false if the initialization failed.
 **
 ** Description:
 ** Initialize communication with LMS by calling the LMSInitialize
 ** function, which will be implemented by the LMS.
 **

**/
 function doLMSInitialize()
 {

9-5

The SCORMTM Implementation Guide: A Step-by-Step Approach

Section 9: Develop Product — Create SCOs

 var api = getAPIHandle();

 if (api == null)
 {
 alert("Unable to locate the LMS's API Implementation.\n" +
 "LMSInitialize was not successful.");
 return "false";
 }

 var result = api.LMSInitialize("");

 if (result.toString() != "true")
 {
 // may want to do some error handling
 }

 return result.toString();
 }

/**
 **
 ** Function doLMSFinish()
 ** Inputs: None
 ** Return: CMIBoolean true if successful
 ** CMIBoolean false if failed.
 **
 ** Description:
 ** Close communication with LMS by calling the LMSFinish
 ** function, which will be implemented by the LMS
 **

**/
 function doLMSFinish()
 {
 var api = getAPIHandle();

 if (api == null)
 {
 alert("Unable to locate the LMS's API Implementation.\n" +
 "LMSFinish was not successful.");
 return "false";

9-6

The SCORMTM Implementation Guide: A Step-by-Step Approach

Section 9: Develop Product — Create SCOs

 }
 else
 {
 // call LMSFinish only if it was not previously called
 if (! finishCalled)
 {
 finishCalled = 1;

 // call the LMSFinish function that should be implemented by the API
 var result = api.LMSFinish("");

 if (result.toString() != "true")
 {
 // may want to do some error handling
 }
 }
 }

 return result.toString();
 }

/***

 **
 ** Function doLMSGetValue(name)
 ** Inputs: name - string representing the cmi data model defined category or
 ** element (e.g. cmi.core.student_id)
 ** Return: The value presently assigned by the LMS to the cmi data model
 ** element defined by the element or category identified by the name
 ** input value.
 **
 ** Description:
 ** Wraps the call to the LMS LMSGetValue method
 **

**
*******/
 function doLMSGetValue(name)
 {
 var api = getAPIHandle();
 if (api == null)

9-7

The SCORMTM Implementation Guide: A Step-by-Step Approach

Section 9: Develop Product — Create SCOs

 {
 alert("Unable to locate the LMS's API Implementation.\n" +
 "LMSGetValue was not successful.");
 return "";
 }
 else
 {
 var value = api.LMSGetValue(name);
 var errCode = api.LMSGetLastError().toString();

 if (errCode != "0")
 {
 // may want to do some error handling
 }
 else
 {
 return value.toString();
 }
 }
 }

/***

 **
 ** Function doLMSSetValue(name, value)
 ** Inputs: name -string representing the data model defined category or element
 ** value -the value that the named element or category will be assigned
 ** Return: CMIBoolean true if successful
 ** CMIBoolean false if failed.
 **
 ** Description:
 ** Wraps the call to the LMS LMSSetValue function
 **

**
*******/
 function doLMSSetValue(name, value)
 {
 var api = getAPIHandle();
 if (api == null)
 {

9-8

The SCORMTM Implementation Guide: A Step-by-Step Approach

Section 9: Develop Product — Create SCOs

 alert("Unable to locate the LMS's API Implementation.\n" +
 "LMSSetValue was not successful.");
 return;
 }
 else
 {
 var result = api.LMSSetValue(name, value);
 if (result.toString() != "true")
 {
 // may want to do some error handling
 }
 }

 return;
 }

/**
 **
 ** Function normalExit()
 ** Inputs: None
 ** Return: None
 **
 ** Description:
 ** Makes the appropriate calls for a normal exit calling LMSFinish and
 ** setting cmi.core.exit to "" for a normal exit
 **

**/
 function normalExit()
 {
 // do not call a set after finish was called
 if (! finishCalled)
 {
 doLMSSetValue("cmi.core.exit", "");
 }

 doLMSFinish();
 }

/**

9-9

The SCORMTM Implementation Guide: A Step-by-Step Approach

Section 9: Develop Product — Create SCOs

 **
 ** Function abnormalExit()
 ** Inputs: None
 ** Return: None
 **
 ** Description:
 ** Makes the appropriate calls for an abnormal exit calling LMSFinish
 ** and setting cmi.core.exit to suspend
 **

**/
 function abnormalExit()
 {
 // do not call a set after finish was called
 if (! finishCalled)
 {
 doLMSSetValue("cmi.core.exit", "suspend");
 }

 doLMSFinish();
 }
 </script>
 </head>

Add the body tag. It is recommended as a best practice to supply an onunload event
handler to accommodate situations in which content is abnormally closed (e.g., user
closes window). This is a error-handling practice to ensure that LMSFinish() is called if
the user exits in an unpredictable manner (such as not logging out of the LMS properly).
The onunload also will be called on a normal exit.

Example:
 <body onunload="return abnormalExit()">

Add the JavaScript code to make the calls to find the API and call LMSInitialize().
Example:
 <script type="text/javascript">
 getAPI();
 doLMSInitialize();
 </script>

Add the content of the SCO as you normally would. Notice how you also can use the
SCORM data model to write the content in the example.

9-10

The SCORMTM Implementation Guide: A Step-by-Step Approach

Section 9: Develop Product — Create SCOs

Example:
 <p>
 This is a simple SCO for demonstration of how to add the JavaScript
 code needed to interact with an LMS provided API adapter.

 Content would go here.

 Let's demonstrate the use of the data model.

 <script type="text/javascript">
 var api = getAPIHandle();
 var message = "Hello ";
 var studentName = doLMSGetValue("cmi.core.student_name");
 var errCode = api.LMSGetLastError().toString();

 if (errCode == "0")
 {
 message = message + studentName + ".";
 }
 else
 {
 message = "There was an error getting the student name " +
 "using LMSGetValue('cmi.core.student_name')";
 }

 document.write(message);
 </script>

<hr />
 </p>

Use some mechanism (such as a button) to show that the user has completed the content.
The button is used to know when to make the call to LMSFinish.
Example:
 <form>
 <table cols="2" width="100%" align="center">
 <tr>
 <td><hr /></td>
 <td align="center">
 <input type="button" id="doneButton" name="doneButton"
 value=" Done " onclick="normalExit()">
 </td>
 </tr>

9-11

The SCORMTM Implementation Guide: A Step-by-Step Approach

Section 9: Develop Product — Create SCOs

 </table>
 </form>

End the HTML page as you normally would.
Example:
 </body>
</html>

Example:

<html>
 <head>
 <title>Simple SCO Example</title>
<script type="text/javascript">
 // local variable definitions used for finding the API
 var apiHandle = null;
 var API = null;
 var findAPITries = 0;

 // local variable used to keep from calling LMSFinish more than once
 var finishCalled = 0;

 </head>

 <body onunload="return abnormalExit()">
 <script type="text/javascript">
 getAPI();
 doLMSInitialize();
 </script>
 <p>
 This is a simple SCO for demonstration of how to add the JavaScript
 code needed to interact with an LMS provided API adapter.

 Normal static content would go here.

 Let's demonstrate the use of the data model.

 <script type="text/javascript">
 var api = getAPIHandle();
 var message = "Hello ";
 var studentName = doLMSGetValue("cmi.core.student_name");
 var errCode = api.LMSGetLastError().toString();

9-12

The SCORMTM Implementation Guide: A Step-by-Step Approach

Section 9: Develop Product — Create SCOs

 if (errCode == "0")
 {
 message = message + studentName + ".";
 }
 else
 {
 message = "There was an error getting the student name " +
 "using LMSGetValue('cmi.core.student_name')";
 }

 document.write(message);
 </script>

<hr />
 </p>
 <form>
 <table cols="2" width="100%" align="center">
 <tr>
 <td><hr /></td>
 <td align="center">
 <input type="button" id="doneButton" name="doneButton"
 value=" Done " onclick="normalExit()">
 </td>
 </tr>
 </table>
 </form>
 </body>
</html>

9-13

The SCORMTM Implementation Guide: A Step-by-Step Approach

Section 9: Develop Product — Create SCOs

 Job Aide 9-1 — Writing SCORM Meta-data

Adapted from the SCORM Content Aggregation Model

NR = Hierarchical Number System
Explanation = detailed description of the element
Name = Element Name
Mandatory = provides a Yes/No response whether the SCO must implement the element

Refer to the SCORM Content Aggregation Model for additional details on the following
chart.

NR Name Explanation Mandatory
1 General Describes the resource as a whole. Y
1.1 Identifier Globally unique label that identifies the

resource.
Y

1.2 Title Name given to the SCO. Y
1.3 Catalog Entry Defines an entry within a catalog assigned to

the resource.
Y

1.3.1 Catalog The name of the catalog. Y
1.3.2 Entry Actual value of the entry within the catalog. Y
1.4 Language Language used with this SCO to communicate

to the intended user.
N

1.5 Description Textual description of the SCO. Y
1.6 Keyword Keywords or phases describing the SCO. Y
1.7 Coverage The span or extent of such things as time,

culture, geography or region that applies to this
SCO.

N

1.8 Structure Underlying structure of the SCO:
• Collection
• Mixed
• Linear
• Hierarchical
• Networked
• Branched
• Parceled
• Atomic.

N

1.9 Aggregation
level

Functional granularity:
1 - Lowest level of granularity
2 - Collection of atoms.

N

9-14

The SCORMTM Implementation Guide: A Step-by-Step Approach

Section 9: Develop Product — Create SCOs

NR Name Explanation Mandatory
2.0 Lifecycle Describes the history and current state of SCO. Y
2.1 Version The edition of the resource. Y
2.2 Status The present state of the SCO:

• Draft
• Final
• Revised
• Unavailable.

Y

2.3 Contribute People or organizations that have affected the
state of the SCO.

N

2.3.1 Role List only one:
• Author
• Publisher
• Unknown
• Initiator
• Terminator
• Validator
• Editor
• Graphical Designer
• Technical implementer
• Content Provider
• Technical Validator
• Educational Validator
• Script Writer
• Instructional Designer.

N

2.3.2 Entity The identification and information about the
people or organizations contributing to this
resource.

N

2.3.3 Date Date of contribution. N
3.0 Meta –

Metadata
Describes the specific information about this
meta-data record itself.

Y

3.1 Identifier Globally unique label that identifies this meta-
data record.

Y

3.2 Catalog Entry Defines an entry within a catalog. N
3.3.2 Entity Identification of and information about the

people or organizations contributing to this
meta-data instance (most relevant first).

N

3.3.3 Date The date the SCO was created. N
3.4 Meta-data

Schema
The name and version of the authoritative
specification used to create this meta-data.

Y

3.5 Language Language of the meta-data instance (this can be N
9-15

The SCORMTM Implementation Guide: A Step-by-Step Approach

Section 9: Develop Product — Create SCOs

NR Name Explanation Mandatory
a different language than that of the content).

4.0 Technical Describes the technical requirements and
characteristics of this resource.

Y

4.1 Format Technical data types that identify the software
needed to access the resource. The string is
restricted to either a MIME type or “non-
digital.”

Y

4.2 Size The size of the digital resource in bytes. N
4.3 Location A string that is used to access this resource. It

may be a location URL or a method that
resolves to a location URL.

Y

4.4 Requirement Describes the technical capabilities required to
use this resource.

N

4.4.1 Type The technology required to use this resource. N
4.4.2 Name Name of the required technology to use

resource.
N

4.4.3 Minimum
Version

Lowest possible version of the required
technology to use this resource.

N

4.4.4 Maximum
Version

Highest version of the technology known to
support the use of this resource.

N

4.5 Installation
Remarks

Description of how to install this resource. N

4.6 Other
Platform
Requirements

Information about other software and
hardware.

N

4.7 Duration Time continuous resource takes when played at
intended speed.

N

5.0 Educational Describes the key educational or pedagogic
characteristics of this resource.

N

5.1 Interactivity The flow of interaction between the resource
and the intended user.

N

5.2 Learning
Resource
Type

Specific kind of resource:
• Exercise
• Questionnaire
• Figure
• Index
• Exam
• Problem statement
• Simulation
• Diagram

N

9-16

The SCORMTM Implementation Guide: A Step-by-Step Approach

Section 9: Develop Product — Create SCOs

NR Name Explanation Mandatory
• Graph
• Slide
• Narrative text
• Experiment
• Self assessment.

5.3 Interactivity
Level

Defines the degree of interactivity between the
end user and the resource:

• Very low
• Low
• Medium
• High
• Very high.

N

5.4 Semantic
density

Defines a subjective measure of this resource’s
usefulness compared to its size or duration:

• Very low
• Low
• Medium
• High
• Very high.

N

5.5 Intended end
user role

Principal user(s) for which the resource was
designed:

• Teacher
• Author
• Learner
• Manager.

N

5.6 Context Principal environment within which the
learning and use of this resource is intended to
take place:

• Primary education
• Secondary education
• Higher education
• University first cycle
• University second cycle
• University postgrade
• Technical school first cycle
• Technical school second cycle
• Professional formation
• Continuous formation
• Vocational training.

N

9-17

The SCORMTM Implementation Guide: A Step-by-Step Approach

Section 9: Develop Product — Create SCOs

NR Name Explanation Mandatory
5.7 Typical age

range
Age range of the typical user. N

5.8 Difficulty Level of difficulty for the typical target
audience to complete the resource successfully:

• Very easy
• Easy
• Medium
• Difficult
• Very difficult.

N

5.9 Typical
learning time

Approximate or typical time it takes to work
with this resource.

N

5.10 Description Comments on how this resource is to be used. N
5.11 Language The language used by the typical audience. N
6.0 Rights Describes the intellectual property rights and

conditions used for this resource.
Y

6.1 Cost Whether use of the resource requires payment. Y
6.2 Copyright and

other
restrictions

Whether copyright or other restrictions apply to
the use of this resource.

Y

6.3 Description Comments on the conditions of this resource. N
7.0 Relation Defines the relationship between this resource

and other resources, if any.
N

7.1 Kind Nature of the relationship between this
resource and the target resource, identified by
7.2:relation.resource:

• Ispartof
• Haspart
• Isversionof
• Hasversion
• Isformatof
• Hasformat
• References
• Isreferencedby
• Isbasedon
• Isbasison
• Isbasisfor
• Requires
• Isrequiredby.

N

7.2 Resource The target resource that this relationship
references.

N

9-18

The SCORMTM Implementation Guide: A Step-by-Step Approach

Section 9: Develop Product — Create SCOs

NR Name Explanation Mandatory
7.2.1 Identifier Unique identifier of the target resource. Y
7.2.3 Catalog entry Defines an entry within a catalog assigned to

this resource.
N

7.2.3.1 Catalog The name of the catalog. N
7.2.3.2 Entry Actual value of the entry within the catalog. N
8.0 Annotation Provides comments on the educational use of

this resource, who created this annotation and
when.

N

8.1 Person The person who created this annotation. N
8.2 Date Date that this annotation was created. N
8.3 Description The content of this annotation. Gives a more

detailed description of the elements in this sub-
category.

N

9.0 Classification Describes where this resource is placed within
a particular classification system.

Y

9.1 Purpose The purpose of classifying this resource:
• Discipline
• Idea
• Prerequisites
• Educational objectives
• Accessibility restrictions
• Educational level
• Skill level
• Security level.

Y

9.2 Taxonpath Taxonomic path in a specific classification
system.

N

9.2.1 Source The name of the classification system. N
9.2.2. Taxon Describes a particular term within a

hierarchical classification system or taxonomy;
node that has a defined label or term.

N

9.2.2.1 Id The identifier of the taxon, such as number or
letter combination provided by the source of
the taxonomy.

N

9.2.2.2 Entry The textual label of the taxon. N
9.3 Description Description of the resource relative to the

stated.
Y

9.4 Keyword Keywords and phrases describing the resource
relative to the stated 9.1: classification. Purpose
of this specific classification, such as
accessibility, security level, etc. (most relevant

Y

9-19

The SCORMTM Implementation Guide: A Step-by-Step Approach

Section 9: Develop Product — Create SCOs

NR Name Explanation Mandatory
first).

9-20

The SCORMTM Implementation Guide: A Step-by-Step Approach

Section 9: Develop Product — Create SCOs

21

The SCORMTM Implementation Guide: A Step-by-Step Approach

Section 10: Develop Product — Create Manifest

1

The SCORMTM Implementation Guide: A Step-by-Step Approach

Section 10: Develop Product — Create Manifest

10. Develop Product — Create Manifest

What

A content package must contain a manifest, which is a description (in XML) of the
resources and organization of those resources. A manifest defines how to represent the
intended structure and behavior of a learning experience. The manifest can describe part
of a course that can stand by itself, outside the context of a course. It is up to content
developers to describe the content in the way it should be considered for aggregation or
disaggregation. The general rule is that a package always contains a single top-level
manifest that may contain one or more sub-manifests. The top-level manifest always
describes the package. Any nested sub-manifests describe the content at the level at
which the sub-manifest is scoped, such as course, instructional object or other.

The manifest is written on completion of the following:

• Creation of Sharable Content Objects (SCOs), JavaScript calls and data model
element incorporation

• SCO and asset meta-data
• Testing of SCOs.

The manifest file contains three major sections:

1. Meta-data section to describe the content package as a whole.
2. Organizations section to describe the organization or structure of the content.
3. Resources section to describe the list of content resources in the package.

The manifest provides the mechanism for associating the various meta-data application
profiles, as defined in the SCORM, with the corresponding content model components.
The manifest provides five different places where the corresponding meta-data can be
associated:

1. File section (<file>) – Asset Meta-data Application Profile. This meta-data is
used to describe the file in a context-independent manner.

2. Resource section (<resource>) – SCO Meta-data Application Profile if the
associated resource is a SCO; Asset Meta-data Application Profile if the
associated resource is an asset. This meta-data is used to describe the resource in
a context-unspecific manner.

3. Item Section (<item>) – Content Aggregation Meta-data Application Profile.
This meta-data is used to describe the item in the context of where it is placed in
the content aggregation.

4. Organization Section (<organization>)– Content Aggregation Meta-data
Application Profile. This meta-data is used to describe the organization as a
whole.

2

The SCORMTM Implementation Guide: A Step-by-Step Approach

Section 10: Develop Product — Create Manifest

5. Package Section (<metadata>) – At present, there is no SCORM Meta-data
Application Profile defined for the Package Level meta-data. The only
requirement in the SCORM is that this meta-data has to be valid IMS Learning
Resource meta-data. This meta-data is used to describe the entire package as a
whole.

Why

A manifest is used within a content package to describe the contents of the package and
any particular structure to the content. The manifest can be considered a “packing slip,”
listing the contents and any structure to the contents.

How

These steps outline one way to create a manifest to be supplied within a content package.
Many authoring tools exist today that automate the creation of a manifest.

Create a file named “imsmanifest.xml” and save the file. Wherever you saved the
manifest should be considered the root of your content package (see Content Package
section, Section 11, for more details).

Place the following XML directive (processing instruction), <?xml
version=”1.0”?>, as the first line in the manifest XML file. This indicates the version
of XML that the manifest is using.

Create the following opening XML tag (root node for the manifest): <manifest>

If required, add the identifier, version and xml:base attributes to the <manifest>
element. All of these attributes are considered optional and should be added to the
<manifest> element if the author has a need.

• identifier – This attribute can be provided by the author or authoring tool. The
identifier attribute should uniquely identify the manifest. The identifier is required
to be unique within the context of the manifest.

• version – The version attribute can be provided by the author or authoring tool to
indicate the version of the manifest.

• xml:base – This attribute explicitly specifies the base Uniform Resource Identifier
(URI) of the manifest as a whole. Adding this attribute all relative URIs defined
in the manifest (e.g., href attributes) will resolve to the absolute URI by
prepending the xml:base attribute to the relative URI.

Example:
 <?xml version="1.0" ?>
 <manifest identifier="SCORM_WBT" version="1.0">

3

The SCORMTM Implementation Guide: A Step-by-Step Approach

Section 10: Develop Product — Create Manifest

There are additional attributes that must be added to the root element (<manifest>) to
permit XML to be validated by an XML validating parser. You need to declare the
default namespace for those XML elements that will be used in the manifest. The default
namespace is dependent on the namespace defined for the IMS Content Packaging XML
Schema Definition (XSD). The SCORM Version 1.2 references the
imscp_rootv1p1p2.xsd, which is available on the IMS Website. The default namespace
defined in this XSD is: http://www.imsproject.org/xsd/imscp_rootv1p1p2.

If you are going to use additional XML elements in the manifest, then you will need to
declare from what XML elements the namespace originated. The SCORM requires the
use of elements defined with the
“http://www.adlnet.org/xsd/adlcp_rootv1p2” namespace. This namespace is
defined in the ADL XSD: adlcp_rootv1p2.xsd. To declare the additional namespaces,
add the following declaration(s):
“xmlns:adlcp=http://www.adlnet.org/xsd/adlcp_rootv1p2”

The prefix adlcp is the required prefix to identify that the elements originate from the
ADL namespace. If additional elements used in the manifest are from a namespace
different from IMS or ADL, then similar declarations should be added.

The next declaration that is needed is the following:
xmlns:xsi=” http://www.w3.org/2001/XMLSchema-instance”

This declaration is needed to identify the schemaLocation attribute. The declaration
indicates that the schemaLocation attribute is defined in the xsi namespace.

The next attribute, xsi:schemaLocation, provides hints from the author to a processor
regarding the location of the schema documents. However, the xml specification does
not require that the processor utilize the schema location. You will need to consult your
specific processor documentation. The author is indicating that the schema documents
are relevant to checking the validity of the manifest (on a namespace-by-namespace
basis).

The schemaLocation attribute is represented by a string that defines a pair of values.
The first member of the pair represents the namespace for which the second member of
the pair is a hint describing where to find the appropriate XSD.

The next declaration is as follows:

4

xsi:schemaLocation="http://www.imsproject.org/xsd/imscp_rootv1p1p2
imscp_rootv1p1p2.xsd http://www.imsglobal.org/xsd/imsmd_rootv1p2p1
imsmd_rootv1p2p1.xsd http://www.adlnet.org/xsd/adlcp_rootv1p2
adlcp_rootv1p2.xsd">

The SCORMTM Implementation Guide: A Step-by-Step Approach

Section 10: Develop Product — Create Manifest

In the example above, the declaration is stating that any element from the
http://www.imsproject.org/xsd/imscp_rootv1p1p2 namespace can be
checked for validity using the imscp_rootv1p1p2.xsd XSD that is located in the same
location as the manifest. It also says that those elements from the
http://www.ismglobal.org/xsd/imsmd_rootv1p2p1 and
http://www.adlnet.org/xsd/adlcp_rootv1p2 namespace can be checked for
validity using the associated XSDs as indicated in the example.

Fill in the resource section. The resource section defines the set of SCOs and/or assets
that are included in the content package for each resource (SCO or asset), all files that are
used in the makeup of the resource need to be listed using the <file> element.
Use the following steps for each resource:

• Create a unique identifier to be used throughout the manifest to identify the
resource.

• Create resource meta-data. The creation of meta-data is optional at this time. If
meta-data is created for the resource, make sure the appropriate application profile
is used during the meta-data creation (A SCO resource – SCO Meta-data
Application Profile, An Asset resource – Asset Meta-data Application Profile).

• Identify the href (relative or absolute URL) to the location of the file (keeping in
mind the use of the xml:base attribute).

• List the type of content as “webcontent” (required vocabulary).
• Identify the SCORM type of content using the adlcp:scormtype attribute (either

“sco” or “asset”).
• Declare any and all files that are used in the makeup of the resource as a whole.
• List any dependencies that the resource has. The dependency references other

resources upon which the given resource may be dependent. One typical example
of a type of dependency is a similar set of images that might be used throughout
all of the SCOs referenced in the content package. The set of images could be
made a separate <resource> and all of the resource declarations for the SCO could
reference, using the <dependency> element, the <resource> defining the set of
images.

 Example:
<resources>
<resource identifier="co01" href="COs/WBT_2.2CO.html"
type="webcontent" adlcp:scormtype="asset">
<metadata>
 <schema>ADL SCORM</schema>
 <schemaversion>1.2</schemaversion>
 <adlcp:location>sco01.xml</adlcp:location>
 </metadata>
 <file href="COs/WBT_2.2CO.html" />

5

The SCORMTM Implementation Guide: A Step-by-Step Approach

Section 10: Develop Product — Create Manifest

 <file href="APIWrapper.js" />
 </resource>
<resource identifier="sco01"
href="Lesson2/2.2.1/WBT_2.2.1.html?msg=This" type="webcontent"
adlcp:scormtype="sco">
 <file href="Lesson2/2.2.1/WBT_2.2.1.html?msg=This" />
 <file href="APIWrapper.js" />
 </resource>
<resource identifier="sco02" href="Lesson2/2.2.2/WBT_2.2.2.html"
type="webcontent" adlcp:scormtype="sco">
 <file href="Lesson2/2.2.2/WBT_2.2.2.html" />
 <file href="APIWrapper.js" />
 </resource>
<resource identifier="sco03" href="Lesson2/2.2.3/WBT_2.2.3.html"
type="webcontent" adlcp:scormtype="sco">
 <file href="Lesson2/2.2.3/WBT_2.2.3.html" />

 <dependency identifierref=”Shared1” />
 </resource>
<resource identifier=”Shared1” href=”APIWrapper.js”
type=”webcontent” adlcp:scormtype=”asset”>
 <file href=”APIWrapper.js” />
</resource>
 </resources>

Fill in the organizations section. The organizations section describes one or more content
structures or organizations for the package. The organizations section describes the
intention for content structure and sequencing of the content aggregation (course, lesson,
module, etc.).

• Identify the SCOs or Assets to point at the resource section using the <item>’s
identifierref attribute.

• Create the unique identifier using your organization naming convention.
• Title the SCOs using the titles given to the SCOs presented in the storyboards.
• Add Content Aggregation meta-data or reference external meta-data files (if

applicable). Within the organization section, this can exist under the
<organization> element, under the <item> element or under both of these
elements.

<organizations default="TOC1">
 <organization identifier="TOC1">
 <title>ADL's Implementation Guidelines Web
 Based Training</title>
 <item identifier="I1a" identifierref="co01">
 <title>Objectives</title>
 <metadata>

6

The SCORMTM Implementation Guide: A Step-by-Step Approach

Section 10: Develop Product — Create Manifest

 <schema>ADL SCORM</schema>
 <schemaversion>1.2</schemaversion>
 <adlcp:location>ca_metadata.xml
 </adlcp:location>
 </metadata>
 </item>
 <item identifier="I1" identifierref="sco01"
 parameter="msg=This">
 <title>Learning Design</title>
 <metadata>
 <schema>ADL SCORM</schema>
 <schemaversion>1.2</schemaversion>
 <adlcp:location>ca_metadata.xml
 </adlcp:location>
 </metadata>
 </item>
 <item identifier="I2"
 identifierref="sco02">
 <title>SCO Constructs</title>
 <metadata>
 <schema>ADL SCORM</schema>
 <schemaversion>1.2</schemaversion>
 <adlcp:location>ca_metadata.xml
 </adlcp:location>
 </metadata>
 </item>
<item identifier="I3" identifierref="sco03">
 <title>Activity</title>
 <metadata>
 <schema>ADL SCORM</schema>
 <schemaversion>1.2</schemaversion>
 <adlcp:location>ca_metadata.xml</adlcp:location>
 </metadata>
 </item>
 <metadata>
 <schema>ADL SCORM</schema>
 <schemaversion>1.2</schemaversion>
 <adlcp:location>ca_metadata.xml</adlcp:location>
 </metadata>
 </organization>
 </organizations>

Add package level meta-data or reference external meta-data files (if applicable)

• Fill in the schema and schemaversion sections.

7

The SCORMTM Implementation Guide: A Step-by-Step Approach

Section 10: Develop Product — Create Manifest

• Add the actual meta-data or reference the meta-data file.

<metadata>
 <schema>ADL SCORM</schema>
 <schemaversion>1.2</schemaversion>
 <adlcp:location>ims_metadata.xml</adlcp:location>
 </metadata>

or

<metadata>
 <schema>ADL SCORM</schema>
 <schemaversion>1.2</schemaversion>
 <lom xmlns="http://www.imsglobal.org/xsd/imsmd_rootv1p2p1">
 <general>
 <title>
 <langstring>ADL Implementation Guidelines</langstring>
 </title>
 <language>en</language>
 <description>
 <langstring>Web based training on the ADL Guidelines</langstring>
 </description>
 <keyword>
 <langstring>ADL</langstring>
 </keyword>
 <keyword>
 <langstring>Guidelines</langstring>
 </keyword>
 <keyword>
 <langstring>SCORM</langstring>
 </keyword>
 </general>
 </lom>
 </metadata>

Close the manifest file.
 </manifest>

8

The SCORMTM Implementation Guide: A Step-by-Step Approach

Section 13: Verification and Validation — Deliver and Implement Product

9

The SCORMTM Implementation Guide: A Step-by-Step Approach

Section 11: Develop Product — Create Content Package

1

The SCORMTM Implementation Guide: A Step-by-Step Approach

Section 11: Develop Product — Create Content Package

11. Develop Product — Create Content Package

What

A content package describes how to package learning resources for movement between
different environments. A Content Package describes data structures that are used to
provide interoperability of Internet-based content with content creation tools, content
repositories, Learning Management Systems (LMSs), run-time environments and other
systems. The objective is to define a standardized set of structures that can be used to
exchange content. The scope is focused on defining interoperability between systems
that need to import, export, aggregate and disaggregate packages of learning content.

There are two major components of a content package:

1. Manifest - XML document describing the content organization and resources.
2. Physical Files - Can include, but are not limited to, content, media and

assessment.

Why

A content package provides a standardized way to exchange e-learning resources
between different systems or tools. A content package also can define the structure or
organization and the intended behavior of a collection of e-learning resources.

The SCORM defines two types of Content Packaging Application Profiles:

• The Content Aggregation Application Profile provides the means to package a
set of learning resources (SCOs and assets) into a particular context (course,
lesson, module, etc.). The Content Aggregation Application Profile requires the
use of the “organizations” section of a manifest to apply a content structure to the
set of learning resources defined in the content package. This content structure
defines the series of instruction that the content author has selected for use.

• The Resource Package Application Profile defines a mechanism for packaging
learning resources (SCOs and assets) without having to provide a specific
organization, learning context or curricular taxonomy. The content package is
merely a collection of one or more reusable learning resources that can be
transferred between learning systems. A typical application of a Resource
Package would be transferring learning resources into a content repository. These
learning resources do not necessarily have to be related.

The content package provides an efficient method to inventory and bundle all of the
physical files required to deliver the e-learning resources. The content package also
identifies relationships between files that belong to one or more learning resources. This

2

The SCORMTM Implementation Guide: A Step-by-Step Approach

Section 11: Develop Product — Create Content Package

includes externally referenced resources that are not contained as physical files within a
package.

How

1. Determine whether you want to package the files as a PIF.
2. PIF – Package Interchange File is a representation of the content package

components using the PKZIP Version 2.04g archive format (zip). It is not
mandatory that a content package be archived as a PIF. The PIF provides a
concise Web delivery format that can be used to transport content packages
between systems (zipped).

3. Non-PIF – File structure to be used on a CD-ROM or other file system.
4. Place the “imsmanifest.xml” file at the root level of the package.
5. Place all schemas referenced by the manifest at the root level of the package.
6. Place all physical files needed by the packaged courses, lessons, etc. where you

refer to them in your manifest.
7. If using a PIF, compress and save using the PKZIP Version 2.04g standard.
8. Test the newly created package using the Content Package test of the

Conformance Test Suite. See Verification and Validation section, Section 12, for
the step-by-step procedures.

9. If the content package passes the conformance test, import it into the LMS or
system for use.

3

The SCORMTM Implementation Guide: A Step-by-Step Approach

Section 11: Develop Product — Create Content Package

4

The SCORMTM Implementation Guide: A Step-by-Step Approach

Section 12: Verification and Validation — Test and Evaluate Product

1

The SCORMTM Implementation Guide: A Step-by-Step Approach

Section 12: Verification and Validation — Test and Evaluate Product

12. Verification and Validation — Test and Evaluate Product

What

Depending on the design approach, the Verification and Validation phase of the
instructional design process may include expert appraisal, developmental testing,
formative evaluation or summative evaluation.

Why

In addition to expert appraisal and formative and summative evaluation techniques used
to verify instructional effectiveness, Web-based training products require technical
developmental testing. Typical technical developmental testing or debugging, is slightly
more complex for SCORM-conformant content because SCORM conformance, as well
as functionality, must be verified.

The SCORM Version 1.2 Test Suite Version 1.2.2 helps developers verify and validate
how their content will perform in the SCORM environment. The Test Suite offers a
method to test your content to the SCORM conformance level chosen with the client
(refer to Section 3, Analysis –Business Need).

Note: You should perform complete verification of technical functionality not affected
by SCORM implementation before testing for SCORM conformance.

How

To begin testing for SCORM conformance, download the Test Suite software and its
associated SCORM Conformance Requirements document from www.adlnet.org. The
Conformance Requirements document and instructions embedded in the Test Suite
Software will help you conduct four separate tests:

1. Sharable Content Object (SCO) Run-Time Environment (RTE) Test – Tests
SCOs for conformance with the RTE section of the SCORM.

2. Meta-data Conformance Test – Tests meta-data into three sub-categories:
Assets, SCOs and Content Aggregation Meta-data XML documents. Meta-data is
tested for conformance with the Content Aggregation Model, a meta-data
requirement of the SCORM.

3. Content Package Conformance Test – Tests a content package for conformance
with the Content Aggregation Model content packaging requirements of the
SCORM. At this point, all of the files should have been created and tested
outside of the SCORM parameters. Test the newly created package using the
Content Package test of the Conformance Test Suite. The Content Package

2

The SCORMTM Implementation Guide: A Step-by-Step Approach

Section 12: Verification and Validation — Test and Evaluate Product

conformance test verifies the physical structure of the package as well as the
SCOs and meta-data contained within.

4. Learning Management System (LMS) RTE Conformance Test – Tests an
LMS for conformance with the RTE section of the SCORM.

Your use of the Test Suite software will be limited to the SCO RTE, meta-data and
content package tests. The LMS RTE Conformance test is least relevant to instructional
designers and developers because it is used primarily by LMS vendors during the product
development cycle.

Note: The ADL Technical Team updates the Test Suite software with each new release
of the SCORM and releases additional versions to include bug fixes (ex: 1.2.2) when
appropriate. Be sure that you are using the latest release of the Test Suite software for the
version of SCORM that you are targeting for conformance.

After the proper administration of each test, the Test Suite software will generate a test
log stating the level of SCORM conformance. If the SCO, meta-data or content package
fails the conformance test, the test log will provide a detailed report of issues to be
addressed. You should address those issues and retest until the desired conformance
level is achieved. After all conformance tests are successful, the Test Suite will issue a
test log that documents SCORM conformance; this test log can be distributed to the
development team and the client.

Note: While the Test Suite software can confirm or deny SCORM conformance, passing
the conformance tests alone does not guarantee that a product is “ADL Certified.” The
ADL Initiative is developing a process for ADL certification that uses the Test Suite
software as its basis, but includes additional requirements as defined by ADL Certifying
organizations. For the latest on ADL Certification, visit www.adlnet.org.

3

The SCORMTM Implementation Guide: A Step-by-Step Approach

Section 14: List of Acronyms

4

The SCORMTM Implementation Guide: A Step-by-Step Approach

Section 13: Verification and Validation — Deliver and Implement Product

1

The SCORMTM Implementation Guide: A Step-by-Step Approach

Section 13: Verification and Validation — Deliver and Implement Product

2

The SCORMTM Implementation Guide: A Step-by-Step Approach

13. Verification and Validation —Deliver and Implement Product

What

Delivering and implementing the final product is performed by installing and maintaining
the course.

How

In a SCORM environment, the course will be placed into the SCORM-conformant
Learning Management System/Learning Content Management System (LMS/LCMS).
Follow the appropriate directions provided by the LMS/LCMS for importing the content
package into the LMS/LCMS that you are using.

Section 14: List of Acronyms

14. List of Acronyms

ADL Advanced Distributed Learning
API Application Program Interface
CBT Computer-Based Training
DoD Department of Defense
HTML HyperText Markup Language
LMS Learning Management System
LCMS Learning Content Management System
LOM Learning Objects Meta-data
OSD Office of the Secretary of Defense
OUSD Office of the Under Secretary of Defense
OUSD
DUSD(R)

Office of the Secretary of Defense Under Secretary of Defense for
Readiness

PIF Package Interchange Format
RTE Run-Time Environment
SCO Sharable Content Object
SCORM Sharable Content Object Reference Model
SME Subject Matter Expert
TOC Table of Contents
WBT Web-based Training
XML eXtensible Markup Language

1

The SCORMTM Implementation Guide: A Step-by-Step Approach

Section 14: List of Acronyms

2

The SCORMTM Implementation Guide: A Step-by-Step Approach

Section 14: List of References

15. List of References

Advanced Distributed Learning, SCORMTM Version 1.2
Includes the following:

• The SCORM Overview
• The SCORM Content Aggregation Model
• The SCORM Run-Time Environment
• The SCORM Version 1.2 Addendums

Available at http://www.adlnet.org/.

Advanced Distributed Learning, SCORMTM Version 1.2 Conformance Requirements
Version 1.2, February 15, 2001.

AICC/CMI CM1001 Guidelines for Interoperability Version 3.4., October 23, 2000,
http://www.aicc.org/.

William Horton, Designing Web-Based Training, John Wiley & Sons, Inc., 2000, ISBN:
0-471-35614-X.

Morrison, Ross, and Kemp, Designing Effective Instruction, John Wiley & Sons, Inc.,
2001, ISBN: 0-471-38795-9.

Darryl L. Sink and Associates, Inc., The Instructional Developer Workshop
Participant’sBinder, 2001.

1

The SCORMTM Implementation Guide: A Step-by-Step Approach

	1. Introduction
	Background
	Purpose/Audience
	Guide Structure
	Scope
	Organization
	Disclaimers
	Contributors
	Air Force Institute for Advanced Distributed Learning
	U.S. Army Training Support Center
	Internal Revenue Service
	Academic Advanced Distributed Learning Co-Laboratory
	Advanced Distributed Learning Co-Laboratory
	Advanced Distributed Learning Co-Laboratory
	Kristy Murray
	Amy Rossmark
	Key Contributors
	Special thanks to the Office of the Secretary of Defense for their sponsorship of the ADL Initiative and Dr. Robert Wisher, Director, ADL.
	Point of Contact

	2_SCORM Vocabulary.pdf
	2. SCORM Core Vocabulary
	SCORM Core Vocabulary identifies terminology that the user should be familiar with to benefit fully from the sections that follow. Refer to these terms as needed throughout the SCORM implementation process or consult the SCORM for more detailed definiti
	Asset
	Sharable Content Object (SCO)
	Meta-data
	Content Package
	Manifest
	Package Interchange File (PIF)
	Data Model
	Application Program Interface (API)
	Learning Management System (LMS)
	Learning Content Management System (LCMS)

	3_Business Need.pdf
	3. Analysis — Identify the Business Need
	What
	Why
	How

	4_Learner Analysis.pdf
	4. Analysis – Learner Analysis
	What
	Why
	How

	5_Context Analysis.pdf
	5. Analysis – Context Analysis
	What
	Why
	How

	6_Content Sequencing.pdf
	What
	Why
	How
	SCO Construct #1
	SCO Construct #2
	SCO Construct #3
	SCO Construct #4

	7_Design Documents.pdf
	Design — Design Documents
	What
	Why
	How
	Learning Management Systems
	User Interface
	Title of SCOs
	Acronyms
	Application Program Interface (API)
	Data Model Elements

	8_Assets.pdf
	Develop Product — Create Meta-data for Assets
	What
	Why
	When
	How
	
	Adapted from the SCORM Content Aggregation Model

	Legend

	9_SCOs.pdf
	Develop Product — Create SCOs
	What
	Why
	How

	10_Manifest.pdf
	Develop Product — Create Manifest
	What
	Why
	How

	11_Content Package.pdf
	Develop Product — Create Content Package
	What
	Why
	How

	12_Test and Evaluate Product.pdf
	12. Verification and Validation — Test and Evalu
	What
	Why
	How

	13_Implement and Deliver Product.pdf
	Verification and Validation —Deliver and Implemen
	What
	How

	14_Acronyms.pdf
	List of Acronyms

	15_References.pdf
	15. List of References

